|试卷下载
终身会员
搜索
    上传资料 赚现金
    陕西省定边县联考2021-2022学年中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    陕西省定边县联考2021-2022学年中考适应性考试数学试题含解析01
    陕西省定边县联考2021-2022学年中考适应性考试数学试题含解析02
    陕西省定边县联考2021-2022学年中考适应性考试数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省定边县联考2021-2022学年中考适应性考试数学试题含解析

    展开
    这是一份陕西省定边县联考2021-2022学年中考适应性考试数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,下列式子成立的有个等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=(  )

    A.6 B. C.12﹣π D.12﹣π
    2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )
    A.6折 B.7折
    C.8折 D.9折
    3.近似数精确到( )
    A.十分位 B.个位 C.十位 D.百位
    4.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=(  )

    A.1 B. C. D.
    5.如图图形中是中心对称图形的是(  )
    A. B.
    C. D.
    6.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是(  )
    A. B.
    C. D.
    7.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
    A.42,41 B.41,42 C.41,41 D.42,45
    8.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )

    A.80° B.90° C.100° D.102°
    9.下列式子成立的有( )个
    ①﹣的倒数是﹣2
    ②(﹣2a2)3=﹣8a5
    ③()=﹣2
    ④方程x2﹣3x+1=0有两个不等的实数根
    A.1 B.2 C.3 D.4
    10.如图,在矩形 ABCD 中,AB=2a,AD=a,矩形边上一动点 P 沿 A→B→C→D 的路径移动.设点 P 经过的路径长为 x,PD2=y,则下列能大致反映 y 与 x 的函数关系的图象是( )

    A. B.
    C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.一个凸边形的内角和为720°,则这个多边形的边数是__________________
    12.方程x+1=的解是_____.
    13.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.

    14.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:
    ①公交车的速度为400米/分钟;
    ②小刚从家出发5分钟时乘上公交车;
    ③小刚下公交车后跑向学校的速度是100米/分钟;
    ④小刚上课迟到了1分钟.
    其中正确的序号是_____.

    15.用换元法解方程时,如果设,那么原方程化成以为“元”的方程是________.
    16.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.

    17.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______

    三、解答题(共7小题,满分69分)
    18.(10分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
    (1)甲,乙两组工作一天,商店各应付多少钱?
    (2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?
    (3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)
    19.(5分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.
    (1)根据图中所给信息填写下表:
    投中个数统计
    平均数
    中位数
    众数
    A
       
    8
       
    B
    7
       
    7
    (2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.

    20.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.
    时间段(小时/周)
    小丽抽样(人数)
    小杰抽样(人数)
    0~1
    6
    22
    1~2
    10
    10
    2~3
    16
    6
    3~4
    8
    2
    (1)你认为哪位学生抽取的样本不合理?请说明理由.专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.
    21.(10分)在平面直角坐标系中,已知直线y=﹣x+4和点M(3,2)
    (1)判断点M是否在直线y=﹣x+4上,并说明理由;
    (2)将直线y=﹣x+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;
    (3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.

    22.(10分)解不等式组,并把解集在数轴上表示出来.
    23.(12分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(≈1.732,结果精确到0.1m).

    24.(14分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
    (1)若AP=1,则AE= ;
    (2)①求证:点O一定在△APE的外接圆上;
    ②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;
    (3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
    【详解】
    解:∵BC=4,E为BC的中点,
    ∴CE=2,
    ∴S1﹣S2=3×4﹣ ,
    故选D.
    【点睛】
    此题考查扇形面积的计算,矩形的性质及面积的计算.
    2、B
    【解析】
    设可打x折,则有1200×-800≥800×5%,
    解得x≥1.
    即最多打1折.
    故选B.
    【点睛】
    本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.
    3、C
    【解析】
    根据近似数的精确度:近似数5.0×102精确到十位.
    故选C.
    考点:近似数和有效数字
    4、C
    【解析】
    分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.
    详解:如图,延长GH交AD于点P,

    ∵四边形ABCD和四边形CEFG都是矩形,
    ∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
    ∴AD∥GF,
    ∴∠GFH=∠PAH,
    又∵H是AF的中点,
    ∴AH=FH,
    在△APH和△FGH中,
    ∵,
    ∴△APH≌△FGH(ASA),
    ∴AP=GF=1,GH=PH=PG,
    ∴PD=AD﹣AP=1,
    ∵CG=2、CD=1,
    ∴DG=1,
    则GH=PG=×=,
    故选:C.
    点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
    5、B
    【解析】
    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.
    【详解】
    解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.
    【点睛】
    本题考察了中心对称图形的含义.
    6、B
    【解析】
    首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
    【详解】
    设学校购买文学类图书平均每本书的价格是x元,可得:
    故选B.
    【点睛】
    此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
    7、C
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    【详解】
    从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
    所以本题这组数据的中位数是 1,众数是 1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    8、A
    【解析】
    分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.
    详解:∵AB∥CD.
    ∴∠A=∠3=40°,
    ∵∠1=60°,
    ∴∠2=180°∠1−∠A=80°,
    故选:A.
    点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.
    9、B
    【解析】
    根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.
    【详解】
    解:①﹣的倒数是﹣2,故正确;
    ②(﹣2a2)3=﹣8a6,故错误;
    ③(-)=﹣2,故错误;
    ④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.
    故选B.
    【点睛】
    考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.
    10、D
    【解析】
    解:(1)当0≤t≤2a时,∵,AP=x,∴;
    (2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵,∴=;
    (3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;
    综上,可得,∴能大致反映y与x的函数关系的图象是选项D中的图象.故选D.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
    【详解】
    解:设这个多边形的边数是n
    根据多边形内角和公式可得
    解得.
    故答案为:1.
    【点睛】
    此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.
    12、x=1
    【解析】
    无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.
    【详解】
    两边平方得:(x+1)1=1x+5,即x1=4,
    开方得:x=1或x=-1,
    经检验x=-1是增根,无理方程的解为x=1.
    故答案为x=1
    13、(2,2).
    【解析】
    连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.
    【详解】
    如图,连结OA,
    OA==5,
    ∵B为⊙O内一点,
    ∴符合要求的点B的坐标(2,2)答案不唯一.
    故答案为:(2,2).

    【点睛】
    考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.
    14、①②③
    【解析】
    由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.
    【详解】
    解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.
    故正确的序号是:①②③.
    【点睛】
    本题考查了一次函数的应用.
    15、y-
    【解析】
    分析:根据换元法,可得答案.
    详解:﹣=1时,如果设=y,那么原方程化成以y为“元”的方程是y﹣=1.
    故答案为y﹣=1.
    点睛:本题考查了换元法解分式方程,把换元为y是解题的关键.
    16、80°
    【解析】
    根据平行线的性质求出∠4,根据三角形内角和定理计算即可.
    【详解】
    解:

    ∵a∥b,
    ∴∠4=∠l=60°,
    ∴∠3=180°-∠4-∠2=80°,
    故答案为:80°.
    【点睛】
    本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.
    17、
    【解析】

    如图,连接BB′,
    ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
    ∴AB=AB′,∠BAB′=60°,
    ∴△ABB′是等边三角形,
    ∴AB=BB′,
    在△ABC′和△B′BC′中,

    ∴△ABC′≌△B′BC′(SSS),
    ∴∠ABC′=∠B′BC′,
    延长BC′交AB′于D,
    则BD⊥AB′,
    ∵∠C=90∘,AC=BC=,
    ∴AB==2,
    ∴BD=2×=,
    C′D=×2=1,
    ∴BC′=BD−C′D=−1.
    故答案为:−1.
    点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.

    三、解答题(共7小题,满分69分)
    18、(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少;(3)甲乙合作施工更有利于商店.
    【解析】
    (1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;
    (2)由甲乙单独完成需要的时间,再结合(1)求出甲、乙两组单独完成的费用进行比较就可以得出结论;
    (3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结论.
    【详解】
    解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.
    由题意得:
    解得:
    答:甲、乙两组工作一天,商店各应付300元和140元
    (2)单独请甲组需要的费用:300×12=3600元.
    单独请乙组需要的费用:24×140=3360元.
    答:单独请乙组需要的费用少.
    (3)请两组同时装修,理由:
    甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;
    乙单独做,需费用3360元,少赢利200X24=4800元,相当于损失8160元;
    甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;
    因为5120<6000<8160,所以甲乙合作损失费用最少,
    答:甲乙合作施工更有利于商店.
    【点睛】
    考查列二元一次方程组解实际问题的运用,工作总量=工作效率×工作时间的运用,设计推理方案的运用,解答时建立方程组求出甲乙单独完成的工作时间是关键.
    19、(1)7,9,7;(2)应该选派B;
    【解析】
    (1)分别利用平均数、中位数、众数分析得出答案;
    (2)利用方差的意义分析得出答案.
    【详解】
    (1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;
    B成绩排序后为6,7,7,7,7,8,故中位数为7;
    故答案为:7,9,7;
    (2)= [(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;
    = [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= ;
    从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B.
    【点睛】
    此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    20、(1)小丽;(2)80
    【解析】
    解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有随机性与代表性.
    (2).
    答:该校全体初二学生中有80名同学应适当减少上网的时间.
    21、(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.
    【解析】
    (1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;
    (2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;
    (1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=.根据y=kx+b随x的增大而增大,得到k>0,即>0,那么①,或②,分别解不等式组即可求出n的取值范围.
    【详解】
    (1)点M不在直线y=﹣x+4上,理由如下:
    ∵当x=1时,y=﹣1+4=1≠2,
    ∴点M(1,2)不在直线y=﹣x+4上;
    (2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.
    ①点M(1,2)关于x轴的对称点为点M1(1,﹣2),
    ∵点M1(1,﹣2)在直线y=﹣x+4+b上,
    ∴﹣2=﹣1+4+b,
    ∴b=﹣1,
    即平移的距离为1;
    ②点M(1,2)关于y轴的对称点为点M2(﹣1,2),
    ∵点M2(﹣1,2)在直线y=﹣x+4+b上,
    ∴2=1+4+b,
    ∴b=﹣2,
    即平移的距离为2.
    综上所述,平移的距离为1或2;
    (1)∵直线y=kx+b经过点M(1,2),
    ∴2=1k+b,b=2﹣1k.
    ∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,
    ∴y=kn+b=﹣n+4,
    ∴kn+2﹣1k=﹣n+4,
    ∴k=.
    ∵y=kx+b随x的增大而增大,
    ∴k>0,即>0,
    ∴①,或②,
    不等式组①无解,不等式组②的解集为2<n<1.
    ∴n的取值范围是2<n<1.
    故答案为2<n<1.
    【点睛】
    本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.
    22、﹣1≤x<1.

    【解析】
    求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.
    【详解】
    解不等式①,得x<1,
    解不等式②,得x≥﹣1,
    ∴不等式组的解集是﹣1≤x<1.
    不等式组的解集在数轴上表示如下:

    23、大型标牌上端与下端之间的距离约为3.5m.
    【解析】
    试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离.
    试题解析:
    设AB,CD 的延长线相交于点E,
    ∵∠CBE=45°,
    CE⊥AE,
    ∴CE=BE,
    ∵CE=16.65﹣1.65=15,
    ∴BE=15,
    而AE=AB+BE=1.
    ∵∠DAE=30°,
    ∴DE==11.54,
    ∴CD=CE﹣DE=15﹣11.54≈3.5 (m ),
    答:大型标牌上端与下端之间的距离约为3.5m.

    24、(1);(2)①证明见解析;②;(3).
    【解析】
    试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;
    (2)①A、P、O、E四点共圆,即可得出结论;
    ②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.
    试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,
    ∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
    ∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
    ∴∠AEP=∠PBC,∴△APE∽△BCP,
    ∴,即,解得:AE=,
    故答案为:;
    (2)①∵PF⊥EG,∴∠EOF=90°,
    ∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,
    ∴点O一定在△APE的外接圆上;
    ②连接OA、AC,如图1所示:
    ∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,
    ∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,
    ∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,
    即点O经过的路径长为;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:
    则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,
    设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,
    ∴,即,解得:AE= =,
    ∴x=2时,AE的最大值为1,此时MN的值最大=×1=,
    即△APE的圆心到AB边的距离的最大值为.

    【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.

    相关试卷

    陕西省榆林市定边县2022年中考联考数学试题含解析: 这是一份陕西省榆林市定边县2022年中考联考数学试题含解析,共21页。试卷主要包含了如图,双曲线y=等内容,欢迎下载使用。

    江苏省南京建邺区六校联考2021-2022学年中考适应性考试数学试题含解析: 这是一份江苏省南京建邺区六校联考2021-2022学年中考适应性考试数学试题含解析,共18页。试卷主要包含了如图,,,则的大小是,如图所示的几何体的俯视图是,若2<<3,则a的值可以是,点P等内容,欢迎下载使用。

    2022年陕西省定边县重点名校中考联考数学试题含解析: 这是一份2022年陕西省定边县重点名校中考联考数学试题含解析,共23页。试卷主要包含了下列图形中,不是轴对称图形的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map