陕西省商洛重点中学2022年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.对于非零的两个实数、,规定,若,则的值为( )
A. B. C. D.
2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个 B.3个 C.2个 D.1个
3.计算-5+1的结果为( )
A.-6 B.-4 C.4 D.6
4.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为( )米.
A.25×10﹣7 B.2.5×10﹣6 C.0.25×10﹣5 D.2.5×10﹣5
5.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为( )
A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×1011
6.若代数式的值为零,则实数x的值为( )
A.x=0 B.x≠0 C.x=3 D.x≠3
7.济南市某天的气温:-5~8℃,则当天最高与最低的温差为( )
A.13 B.3 C.-13 D.-3
8.已知x2-2x-3=0,则2x2-4x的值为( )
A.-6 B.6 C.-2或6 D.-2或30
9.如图所示的几何体的左视图是( )
A. B. C. D.
10.函数的自变量x的取值范围是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程
已知:线段a、b,
求作:.使得斜边AB=b,AC=a
作法:如图.
(1)作射线AP,截取线段AB=b;
(2)以AB为直径,作⊙O;
(3)以点A为圆心,a的长为半径作弧交⊙O于点C;
(4)连接AC、CB.即为所求作的直角三角形.
请回答:该尺规作图的依据是______.
12.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.
13.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.
14.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.
15.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.
16.27的立方根为 .
17.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
三、解答题(共7小题,满分69分)
18.(10分)先化简,再求值:(x﹣2﹣)÷,其中x=.
19.(5分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.
(1)请写出两个“关于轴对称的二次函数”;
(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).
20.(8分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.
21.(10分)已知关于x的一元二次方程为常数.
求证:不论m为何值,该方程总有两个不相等的实数根;
若该方程一个根为5,求m的值.
22.(10分)已知.化简;如果、是方程的两个根,求的值.
23.(12分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.
(1)求证:CF=DF;
(2)连接OF,若AB=10,BC=6,求线段OF的长.
24.(14分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.
① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;
② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.
考点:1.新运算;2.分式方程.
2、B
【解析】
解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;
∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;
∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;
∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.
故选:B.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
3、B
【解析】
根据有理数的加法法则计算即可.
【详解】
解:-5+1=-(5-1)=-1.
故选B.
【点睛】
本题考查了有理数的加法.
4、B
【解析】
由科学计数法的概念表示出0.0000025即可.
【详解】
0.0000025=2.5×10﹣6.
故选B.
【点睛】
本题主要考查科学计数法,熟记相关概念是解题关键.
5、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
31600000000=3.16×1.故选:C.
【点睛】
本题考查科学记数法,解题的关键是掌握科学记数法的表示.
6、A
【解析】
根据分子为零,且分母不为零解答即可.
【详解】
解:∵代数式的值为零,
∴x=0,
此时分母x-3≠0,符合题意.
故选A.
【点睛】
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
7、A
【解析】
由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.
8、B
【解析】
方程两边同时乘以2,再化出2x2-4x求值.
解:x2-2x-3=0
2×(x2-2x-3)=0
2×(x2-2x)-6=0
2x2-4x=6
故选B.
9、A
【解析】
本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.
10、D
【解析】
根据二次根式的意义,被开方数是非负数.
【详解】
根据题意得,
解得.
故选D.
【点睛】
本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负数.
二、填空题(共7小题,每小题3分,满分21分)
11、等圆的半径相等,直径所对的圆周角是直角,三角形定义
【解析】
根据圆周角定理可判断△ABC为直角三角形.
【详解】
根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.
故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.
12、5750
【解析】
根据题意设甲产品的成本价格为b元,求出b,可知A原料与B原料的成本和40元,然后设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,列出方程组得到xn=20n﹣250,最后设生产甲乙产品的实际成本为W元,即可解答
【详解】
∵甲产品每袋售价72元,则利润率为20%.
设甲产品的成本价格为b元,
∴ =20%,
∴b=60,
∴甲产品的成本价格60元,
∴1.5kgA原料与1.5kgB原料的成本和60元,
∴A原料与B原料的成本和40元,
设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,
根据题意得:
,
∴xn=20n﹣250,
设生产甲乙产品的实际成本为W元,则有
W=60m+40n+xn,
∴W=60m+40n+20n﹣250=60(m+n)﹣250,
∵m+n≤100,
∴W≤6250;
∴生产甲乙产品的实际成本最多为5750元,
故答案为5750;
【点睛】
此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格
13、3
【解析】
先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.
【详解】
∵四边形ABCD是矩形,∴∠A=90°.
∵AB=8,AD=6,∴BD1.
∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.
故答案为:3.
【点睛】
本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
14、k>
【解析】
由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.
【详解】
∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,
∴△>0,即(2k+1)2-4(k2+1)>0,
解得k>,
故答案为k>.
【点睛】
本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
15、
【解析】
列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.
【详解】
解:列表得:
两个骰子向上的一面的点数和小于6的有10种,
则其和小于6的概率是,
故答案为:.
【点睛】
本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.
16、1
【解析】
找到立方等于27的数即可.
解:∵11=27,
∴27的立方根是1,
故答案为1.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
17、288°
【解析】
母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.
【详解】
解:如图所示,在Rt△SOA中,SO=9,SA=15;
则:
设侧面属开图扇形的国心角度数为n,则由 得n=288°
故答案为:288°.
【点睛】
本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.
三、解答题(共7小题,满分69分)
18、
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式,
,
.
当时,原式
【点睛】
本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.
19、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为
【解析】
(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
(2)根据函数的特点得出a=m,--=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.
【详解】
解:(1)答案不唯一,如;
(2)∵y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,
即a=m,--=0,,
整理得m=a,n=-b,p=c,
则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
∴函数y1+y2的顶点坐标为(0,2c).
【点睛】
本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.
20、;2.
【解析】
先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.
【详解】
解:原式=
=
=
的非负整数解有:2,1,0,
其中当x取2或1时分母等于0,不符合条件,故x只能取0
∴将x=0代入得:原式=2
【点睛】
本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.
21、(1)详见解析;(2)的值为3或1.
【解析】
(1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.
【详解】
证明:原方程可化为,
,,,
,
不论m为何值,该方程总有两个不相等的实数根.
解:将代入原方程,得:,
解得:,.
的值为3或1.
【点睛】
本题考查了参数对一元二次方程根的影响.中等难度.关键是将根据不同情况讨论参数的取值范围.
22、 (1) ;(2)-4.
【解析】
(1)先通分,再进行同分母的减法运算,然后约分得到原式
(2)利用根与系数的关系得到 然后利用整体代入的方法计算.
【详解】
解:(1)
.
(2)∵、是方程,
∴,
∴
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时,, 也考查了分式的加减法.
23、(1)详见解析;(2)OF=.
【解析】
(1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;
(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.
【详解】
(1)证明:连接OC,如图,
∵CF为切线,
∴OC⊥CF,
∴∠1+∠3=90°,
∵BM⊥AB,
∴∠2+∠4=90°,
∵OC=OB,
∴∠1=∠2,
∴∠3=∠4,
∵AB为直径,
∴∠ACB=90°,
∴∠3+∠5=90°,∠4+∠BDC=90°,
∴∠BDC=∠5,
∴CF=DF;
(2)在Rt△ABC中,AC==8,
∵∠BAC=∠DAB,
∴△ABC∽△ABD,
∴,即,
∴AD=,
∵∠3=∠4,
∴FC=FB,
而FC=FD,
∴FD=FB,
而BO=AO,
∴OF为△ABD的中位线,
∴OF=AD=.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.
24、解:(1)22.1.
(2)设需要售出x部汽车,
由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),
当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,
解这个方程,得x1=-20(不合题意,舍去),x2=2.
当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,
解这个方程,得x1=-24(不合题意,舍去),x2=3.
∵3<10,∴x2=3舍去.
答:要卖出2部汽车.
【解析】
一元二次方程的应用.
(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,
(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.
2022年陕西省商洛中考数学押题卷含解析: 这是一份2022年陕西省商洛中考数学押题卷含解析,共19页。试卷主要包含了答题时请按要求用笔,方程x2+2x﹣3=0的解是,下列各式正确的是等内容,欢迎下载使用。
2022年商洛市重点中学中考考前最后一卷数学试卷含解析: 这是一份2022年商洛市重点中学中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了已知二次函数y=等内容,欢迎下载使用。
2022年陕西省商洛重点中学中考数学模拟预测题含解析: 这是一份2022年陕西省商洛重点中学中考数学模拟预测题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。