(新高考)高考数学二轮复习核心考点重难点练习01《七种零点问题》(2份打包,解析版+原卷版)
展开
这是一份(新高考)高考数学二轮复习核心考点重难点练习01《七种零点问题》(2份打包,解析版+原卷版),文件包含新高考高考数学二轮复习核心考点重难点练习01《七种零点问题》解析版doc、新高考高考数学二轮复习核心考点重难点练习01《七种零点问题》原卷版doc等2份试卷配套教学资源,其中试卷共95页, 欢迎下载使用。
重难点01七种零点问题(核心考点讲与练)
方法技巧
1.转化思想在函数零点问题中的应用
方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.
2.判断函数零点个数的常用方法
(1)通过解方程来判断.
(2)根据零点存在性定理,结合函数性质来判断.
(3)将函数y=f(x)-g(x)的零点个数转化为函数y=f(x)与y=g(x)图象公共点的个数来判断.
3.正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数的不等式组,从而可求相应的参数的取值范围.
4.涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.
5.函数零点的求解与判断方法:
(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.
(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.
6.对于复合函数的零点个数问题,求解思路如下:
(1)确定内层函数和外层函数;
(2)确定外层函数的零点;
(3)确定直线与内层函数图象的交点个数分别为、、、、,则函数的零点个数为.
题型一:零点存在定理法判断函数零点所在区间
一、单选题
1.(2022·河南河南·三模(理))若实数,,满足,,,则( )
A. B.
C. D.
2.(2022·黑龙江·双鸭山一中高三期末(理))函数的零点所在的区间为( )
A. B. C. D.
3.(2022·北京密云·高三期末)心理学家有时使用函数来测定在时间内能够记忆的量,其中A表示需要记忆的量,表示记忆率.假设一个学生有200个单词要记忆,心理学家测定在5min内该学生记忆20个单词.则记忆率所在区间为( )
A. B.
C. D.
4.(2022·河南焦作·一模(理))设函数的零点为,则( )
A. B. C. D.
5.(2021·江苏·泰州中学高三阶段练习)已知,函数的零点为,的极小值点为,则( )
A. B.
C. D.
6.(2022·安徽·安庆一中高三期末(理))函数的零点所在的区间为( )
A. B. C. D.
二、多选题
7.(2022·湖北·荆州中学高三开学考试)函数在区间的最小值为,且在区间唯一的极大值点.则下列说法正确的有( )
A. B.
C. D.
8.(2022·全国·高三专题练习)设函数的定义域为R,如果存在常数,对于任意,都有,则称函数是“类周期函数”,T为函数的“类周期”.现有下面四个命题,正确的是( )
A.函数是“类周期函数”
B.函数是“类周期函数”
C.如果函数是“类周期函数”,那么“,”
D.如果“类周期函数”的“类周期”为,那么它是周期为2的周期函数
9.(2021·江西·模拟预测)已知实数,设方程的两个实数根分别为,则下列结论正确的是( )
A.不等式的解集为
B.不等式的解集可能为空集
C.
D.
三、填空题
10.(2022·全国·高三专题练习)下列命题中,正确的是___________.(写出所有正确命题的编号)
①在中,是的充要条件;
②函数的最大值是;
③若命题“,使得”是假命题,则;
④若函数,,则函数在区间内必有零点.
11.(2022·全国·高三专题练习)已知函数,且,为的导函数,下列命题:
①存在实数,使得导函数为增函数;
②当时,函数不单调;
③当时,函数在上单调递减;
④当时,函数有极值.
在以上命题中,正确的命题序号是______.
12.(2021·福建·三明一中高三学业考试)已知函数的零点,则__________.
13.(2022·全国·高三专题练习)已知,均为正实数,且满足,,则下面四个判断:①;②;③;④.其中一定成立的有__(填序号即可).
14.(2020·湖南邵阳·三模(理))在数学中,布劳威尔不动点定理是拓朴学里一个非常重要的不动点定理,它可应用到有限维空间并构成了一般不动点定理的基石,简单来讲就是对于满足一定条件的连续函数,存在一个点,使,那么我们称该函数为“不动点”函数,给出下列函数:①;②③;④();⑤;其中为“不动点”函数的是_________.(写出所有满足条件的函数的序号)
15.(2020·全国·高三专题练习(理))函数f(x)=1+x-+,g(x)=1-x+-,若函数F(x)=f(x+3)g(x-4),且函数F(x)的零点均在[a,b](a
相关试卷
这是一份重难点01七种零点问题(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版),共22页。试卷主要包含了转化思想在函数零点问题中的应用,判断函数零点个数的常用方法,函数零点的求解与判断方法等内容,欢迎下载使用。
这是一份重难点01七种零点问题(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)(解析版),共99页。试卷主要包含了判断函数零点个数的常用方法,函数零点的求解与判断方法等内容,欢迎下载使用。
这是一份重难点01 七种零点问题(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用),文件包含重难点01七种零点问题核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用原卷版docx、重难点01七种零点问题核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用解析版docx等2份试卷配套教学资源,其中试卷共113页, 欢迎下载使用。