(新高考)高考数学一轮复习课时练习5.5《函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用》(含解析)
展开第5讲 函数y=Asin(ωx+φ)的图象及
三角函数模型的简单应用
最新考纲
考向预测
1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.
2.了解三角函数是描述周期变化现象的重要函数模型,会利用三角函数模型解决一些简单的实际问题.
命题趋势
y=Asin(ωx+φ)的图象、图象变换以及由图象求解析式,尤其是y=Asin(ωx+φ)的图象与性质的综合应用是考查的热点,题型多以选择题为主,难度中等.
核心素养
直观想象、数学建模
1.y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时
振幅
周期
频率
相位
初相
初相
A
T=
f==
ωx+φ
φ
φ
2.用五点法画y=Asin(ωx+φ)一个周期内的简图
用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:
x
-
-
-
ωx+φ
0
π
2π
y=Asin(ωx+φ)
0
A
0
-A
0
3.三角函数图象变换的两种方法(ω>0)
常用结论
(1)对称中心与零点相联系,对称轴与最值点相联系.y=Asin(ωx+φ)的图象有无数条对称轴,可由方程ωx+φ=kπ+(k∈Z)解出;它还有无数个对称中心,即图象与x轴的交点,可由ωx+φ=kπ(k∈Z)解出.
(2)相邻两条对称轴间的距离为,相邻两对称中心间的距离也为,函数的对称轴一定经过图象的最高点或最低点.
常见误区
(1)函数y=Asin(ωx+φ)+k图象平移的规律:“左加右减,上加下减”.
(2)由y=sin ωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移个单位长度而非φ个单位长度.
1.判断正误(正确的打“√”,错误的打“×”)
(1)把y=sin x的图象上各点的横坐标缩短为原来的,纵坐标不变,所得图象对应的函数解析式为y=sin x.( )
(2)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.( )
(3)函数f(x)=Asin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( )
(4)如果y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( )
(5)若函数y=Asin(ωx+φ)为偶函数,则φ=2kπ+(k∈Z).( )
答案:(1)× (2)× (3)× (4)√ (5)×
2.为了得到y=3cos的图象,只需把y=3cos图象上的所有点的( )
A.纵坐标伸长到原来的3倍,横坐标不变
B.横坐标伸长到原来的3倍,纵坐标不变
C.纵坐标缩短到原来的,横坐标不变
D.横坐标缩短到原来的,纵坐标不变
解析:选D.因为变换前后,两个函数的初相相同,所以只需把y=3cos图象上的所有点的纵坐标不变,横坐标缩短到原来的,即可得到函数y=3cos的图象.
3.(易错题)要得到函数y=sin的图象,只需将函数y=sin 4x的图象( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
解析:选A.因为y=sin=sin,
所以要得到函数y=sin的图象,只需将函数y=sin 4x的图象向左平移个单位长度.
4.若将函数y=2sin 2x的图象向左平移个单位长度,则得到的图象对应的函数表达式为f(x)=________.
解析:函数y=2sin 2x的图象向左平移个单位长度,得到的图象对应的函数表达式为f(x)=2sin =2sin.
答案:2sin
5.已知函数f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)=________.
解析:设f(x)的最小正周期为T,
根据题图可知,=,
所以T=π,故ω=2,
根据2sin=0(增区间上的零点)可知,+φ=2kπ,k∈Z,
即φ=2kπ-,k∈Z,
又|φ|<,故φ=-.
所以f(x)=2sin.
答案:2sin
五点法作图及图象变换
已知函数f(x)=sin 2x+2cos2x+a,其最大值为2.
(1)求a的值及f(x)的最小正周期;
(2)画出f(x)在[0,π]上的图象.
【解】 (1)f(x)=sin 2x+2cos2x+a
=sin 2x+cos 2x+1+a
=2sin+1+a的最大值为2,
所以a=-1,最小正周期T==π.
(2)由(1)知f(x)=2sin,列表:
x
0
π
2x+
π
2π
f(x)=2sin
1
2
0
-2
0
1
画图如下.
【引申探究】
1.(变问法)若将本例中函数f(x)的图象向左平移个单位长度,把所有点的横坐标伸长到原来的二倍(纵坐标不变),得到函数g(x)的图象,则g(x)=________.
解析:f(x)的图象向左平移个单位长度后得
y=2sin=2sin的图象,
再把所有点的横坐标伸长到原来的二倍(纵坐标不变)得
g(x)=2sin的图象,
即g(x)=2sin.
答案:2sin
2.(变问法)在本例条件下,函数y=2cos 2x的图象向右平移________个单位得到y=f(x)的图象.
解析:将函数y=2cos 2x的图象向右平移个单位长度,可得函数y=2sin 2x的图象,再将y=2sin 2x的图象向左平移个单位长度,可得函数y=2sin(2x+)的图象,综上可得,函数y=2sin的图象可以由函数y=2cos 2x的图象向右平移个单位长度得到.
答案:
函数y=Asin(ωx+φ)(A>0,ω>0)
的图象的两种作法
五点法
设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象
图象变
换法
由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”
[注意] 平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是ωx加减多少值.
1.函数y=sin的图象向左平移φ个单位长度,得到的函数是偶函数,则φ的最小正值是( )
A. B.
C. D.
解析:选A.函数y=sin向左平移φ个单位长度可得y=sin,
因为y=sin是偶函数,
所以2φ+=+kπ,k∈Z,φ=+,k∈Z,
由k=0可得φ的最小正值是.
2.(多选)分别对函数y=sin x的图象进行如下变换:①先向左平移个单位长度,然后将其上各点的横坐标缩短到原来的倍,得到y=f(x)的图象;②先将其上各点的横坐标缩短到原来的倍,然后向左平移个单位长度,得到y=g(x)的图象.则以下结论正确的是( )
A.f(x)与g(x)的图象重合
B.为f(x)图象的一个对称中心
C.直线x=-为函数g(x)图象的一条对称轴
D.f(x)的图象向左平移个单位长度可得g(x)的图象
解析:选BCD.①将y=sin x的图象向左平移个单位长度得到y=sin的图象,再将y=sin的图象上各点的横坐标缩短到原来的倍,得到f(x)=sin的图象;②将y=sin x的图象上各点的横坐标缩短到原来的倍,得到y=sin 2x的图象,再将其图象向左平移个单位长度,得到g(x)=sin=sin的图象.故选项A不正确.令2x+=kπ(k∈Z),得x=π-(k∈Z),令k=1,则可知选项B正确;令2x+=kπ+(k∈Z),得x=+(k∈Z),令k=-1,则可知选项C正确.又g(x)=sin=sin=f,所以f(x)的图象向左平移个单位长度可得g(x)的图象,故选项D正确,故选BCD.
求y=Asin(ωx+φ)的解析式
(多选)(2020·新高考卷Ⅰ)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=( )
A.sin B.sin
C.cos D.cos
【解析】 由题图可知,函数的最小正周期T=2=π,所以=π,ω=±2.当ω=2时,y=sin(2x+φ),将点代入得,sin=0,所以2×+φ=2kπ+π,k∈Z,即φ=2kπ+,k∈Z,故y=sin.由于y=sin=sin[π-(2x+)]=sin,故选项B正确;y=sin(-2x)=cos =cos,选项C正确;对于选项A,当x=时,sin=1≠0,错误;对于选项D,当x==时,cos=1≠-1,错误.当ω=-2时,y=sin(-2x+φ),将代入,得sin(-2×+φ)=0,结合函数图象,知-2×+φ=π+2kπ,k∈Z,得φ=+2kπ,k∈Z,所以y=sin,但当x=0时,y=sin(-2x+)=-<0,与图象不符合,舍去.综上,选BC.
【答案】 BC
确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法
(1)求A,b,确定函数的最大值M和最小值m,
则A=,b=.
(2)求ω,确定函数的最小正周期T,则可得ω=.
(3)求φ,常用的方法有:
①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在下降区间上);
②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:
“最大值点”(即图象的“峰点”)时ωx+φ =+2kπ(k∈Z);“最小值点”(即图象的“谷点”)时ωx+φ=+2kπ(k∈Z).
1.已知函数f(x)=Asin(ωx+φ)
的最小正周期是π,且当x=时,f(x)取得最大值2,则f(x)=________.
解析:因为函数f(x)的最小正周期是π,所以ω=2.又因为x=时,f(x)取得最大值2.
所以A=2,
同时2×+φ=2kπ+,k∈Z,
φ=2kπ+,k∈Z,因为-<φ<,
所以φ=,所以函数y=f(x)的解析式为f(x)=2sin.
答案:2sin
2.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG(点G是图象的最高点)是边长为2的等边三角形,则f(1)=________.
解析:由题意得,A=,T=4=,ω=.又因为f(x)=Acos(ωx+φ)为奇函数,所以φ=+kπ,k∈Z,由0<φ<π,取k=0,则φ=,所以f(x)=cos,所以f(1)=-.
答案:-
函数y=Asin(ωx+φ)图象与性质的综合应用
角度一 三角函数模型的应用
如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到地面的距离是________米.
【解析】 以圆心O1为原点,以水平方向为x轴方向,以竖直方向为y轴方向建立平面直角坐标系,
因为大风车的半径为2米,圆上最低点O离地面1米,
12秒旋转一周,设∠OO1P=θ,运动t秒后与地面的距离为f(t),又周期T=12,所以θ=·2π=t,
f(t)=3+2sin=3-2cos t(t≥0),
当t=40时,f(t)=3-2cos=4(米).
【答案】 4
三角函数模型在实际应用中体现的两个方面
(1)已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与因变量之间的对应法则;
(2)需要建立精确的或者数据拟合的模型去解决问题,尤其是利用已知数据建立拟合函数解决实际问题,此类问题体现了数学建模核心素养,考查应用意识.
角度二 方程根(函数零点)问题
函数y=sin 2x+cos 2x-m在上有两个不同的零点,则m的取值范围是________.
【解】 函数y=sin 2x+cos 2x-m在上有两个不同的零点,转化为m=cos 2x+sin 2x=2sin,在x∈上有两个不同的实数根.
设2x+=t,则t∈,
所以题目条件可转化为=sin t,在t∈上有两个不同的实数根.
所以y=和y=sin t,t∈的图象有两个不同交点,如图:
由图象观察知,的取值范围是,
故m的取值范围是(-2,-1).
【答案】 (-2,-1)
三角函数的零点(方程根)个数问题可转化为两个函数图象的交点问题.
角度三 三角函数图象与性质的综合问题
(多选)将函数f(x)=2sin-1的图象向左平移个单位长度得到函数g(x)的图象,则下列说法正确的是( )
A.函数g(x)的最小正周期是π
B.函数g(x)的图象关于直线x=-对称
C.函数g(x)在上单调递减
D.函数g(x)在上的最大值是1
【解析】 依题意得g(x)=2sin-1=2sin-1,函数g(x)的最小正周期T==π,因此选项A正确;当x=-时,函数y=sin没有取得最值,因此函数g(x)的图象不关于直线x=-对称,故选项B不正确;当x∈时,2x+∈⊆,此时函数g(x)单调递减,故选项C正确;当x∈时,2x+∈,sin∈,因此此时函数g(x)没有最大值,选项D不正确.故选AC.
【答案】 AC
先将y=f(x)化为y=Asin(ωx+φ)+B的形式,再借助y=Asin(ωx+φ)的图象和性质(如定义域、值域、最值、周期性、对称性、单调性等)解决相关问题.
(多选)已知函数f(x)=sin,则下列四个命题中正确的是( )
A.f(x)的最小正周期是π
B.f(x)=是x=的充分不必要条件
C.函数f(x)在区间上单调递增
D.函数y=|f(x)|的图象向左平移个单位长度后所得图象的对称轴方程为x=(k∈Z)
解析:选AD.对于A,由最小正周期T==π知A正确;
对于B,由f(x)=得2x-=2kπ+或2x-=2kπ+(k∈Z),即x=kπ+或x=kπ+(k∈Z),可知f(x)=是x=的必要不充分条件,B不正确;
对于C,由
[A级 基础练]
1.函数y=sin在区间上的简图是( )
解析:选A.令x=0,得y=sin=-,排除B,D.令x=,得y=sin=0,排除C.
2.函数f(x)=tan ωx(ω>0)的图象的相邻两支截直线y=2所得线段长为,则f的值是( )
A.- B.
C.1 D.
解析:选D.由题意可知该函数的周期为,所以=,ω=2,f(x)=tan 2x,所以f=tan=.
3.(2020·高考天津卷)已知函数f(x)=sin(x+).给出下列结论:
①f(x)的最小正周期为2π;
②f()是f(x)的最大值;
③把函数y=sin x的图象上所有点向左平移个单位长度,可得到函数y=f(x)的图象.
其中所有正确结论的序号是( )
A.① B.①③
C.②③ D.①②③
解析:选B.f(x)=sin(x+)的最小正周期为2π,①正确;sin=1=f()为f(x)的最大值,②错误;将y=sin x的图象上所有点向左平移个单位长度得到f(x)=sin(x+)的图象,③正确.故选B.
4.(多选)(2020·山东百师联盟测试)已知函数f(x)=sin2x+sin xcos x-,则下列说法正确的是( )
A.函数f(x)的值域为[-1,1]
B.函数f(x)的图象可由y=sin 2x的图象向右平移个单位得到
C.函数f(x)在上单调递减
D.点是函数f(x)的一个对称中心
解析:选AD.f(x)=sin xcos x+(2sin2x-1)=sin 2x-cos 2x=sin,易知A,D均正确,对于B选项,y=sin 2x的图象应向右平移个单位,得到f(x)的图象,因此B选项不正确;
对于C选项,当-≤x≤时,-≤2x-≤,所以函数f(x)在上单调递减,在上单调递增,因此C选项不正确.
5.(多选)如图是函数f(x)=Asin(ωx+φ)(ω>0,0<φ<)的部分图象,将函数f(x)的图象向右平移个单位长度得到函数y=g(x)的图象,则下列命题正确的是( )
A.y=g(x)是奇函数
B.函数g(x)的图象的对称轴是直线x=kπ+(k∈Z)
C.函数g(x)的图象的对称中心是(k∈Z)
D.函数g(x)的单调递减区间为(k∈Z)
解析:选AD.依题意可得A=2,=+=,故T=π,T==π,解得ω=2.f=2sin[2×+φ]=2sin=0,因为0<φ<,所以φ=,故f(x)=2sin.将函数f(x)=2sin的图象向右平移个单位长度得到函数y=g(x)=2sin 2x的图象,函数g(x)=2sin 2x是奇函数,故A对;函数g(x)的图象的对称轴是直线x=+(k∈Z),故B不对;函数g(x)的图象的对称中心是(k∈Z),故C不对;函数g(x)=2sin 2x的单调递减区间为(k∈Z),故D对.选AD.
6.将函数y=sin x的图象上所有的点向右平移个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________.
解析:y=sin xy=
siny=sin.
答案:y=sin
7.函数y=cos(2x+φ)(0<φ<π)的图象向右平移个单位长度后,与函数y=sin的图象重合,则φ=________.
解析:把函数y=cos (2x+φ)(0<φ<π)的图象向右平移个单位长度后,得到y=cos (2x-π+φ)的图象,
与函数y=sin的图象重合,则cos (2x-π+φ)=sin,
即sin=sin,
所以-+φ=-,则φ=,
答案:
8.若f(x)=2sin(2x+φ)(φ>0)的图象关于直线x=对称,且当φ取最小值时,∃x0∈,使得f(x0)=a,则a的取值范围是________.
解析:因为函数f(x)=2sin(2x+φ)(φ>0)的图象关于直线x=对称,所以+φ=kπ+(k∈Z),所以φ=kπ+(k∈Z),又φ>0,所以当φ取最小值时,φ=,f(x)=2sin.因为x0∈,所以2x0+∈,所以-
9.将函数f(x)=sin 2x的图象向左平移个单位长度后得到函数g(x)的图象,设函数h(x)=f(x)-g(x).
(1)求函数h(x)的单调递增区间;
(2)若g=,求h(α)的值.
解:(1)由已知可得g(x)=sin,
则h(x)=sin 2x-sin=sin.
令-+2kπ≤2x-≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z.
所以函数h(x)的单调递增区间为,k∈Z.
(2)由g=得sin=
sin=,
所以sin=-,即h(α)=-.
10.在①函数f(x)的图象中相邻的最高点与最低点的距离为5,②函数f(x)的图象的一条对称轴方程为x=-1,③函数f(x)的一个对称中心的横坐标为这三个条件中任选一个,补充在下面题目的横线处,并解决问题.
已知函数f(x)=2sin(ωx+φ),且________,点A(2,2)在该函数的图象上,求函数f(x)在区间(-3,3)上的单调递减区间.
注:如果选择多个条件分别解答,按第一个解答计分.
解:若选①,设函数f(x)的最小正周期为T,
则 =5,得T=6=,则ω=,
因为点A(2,2)在该函数的图象上,所以2sin=2,得+φ=+2kπ,k∈Z,
则φ=-+2kπ,k∈Z,
又|φ|<,所以φ=-,所以函数f(x)=2sin,
令+2kπ≤x-≤+2kπ,k∈Z,解得2+6k≤x≤5+6k,k∈Z,
因为(-3,3)∩{x|2+6k≤x≤5+6k,k∈Z}=(-3,-1]∪[2,3),
所以函数f(x)在区间(-3,3)上的单调递减区间为(-3,-1]和[2,3).
若选②,则sin(-ω+φ)=±1,得-ω+φ=+k1π,k1∈Z,
因为点A(2,2)在该函数的图象上,所以2sin(2ω+φ)=2,得2ω+φ=+2k2π,k2∈Z,
则φ=+,k1,k2∈Z.因为|φ|<,所以φ=-,ω=+k2π,k2∈Z,
又0<ω<,所以ω=,
所以函数f(x)=2sin,
令+2kπ≤x-≤+2kπ,k∈Z,解得2+6k≤x≤5+6k,k∈Z,
因为(-3,3)∩{x|2+6k≤x≤5+6k,k∈Z}=(-3,-1]∪[2,3),
所以函数f(x)在区间(-3,3)上的单调递减区间为(-3,-1]和[2,3).
若选③,则2sin=0,得ω+φ=k1π,k1∈Z,
因为点A(2,2)在该函数的图象上,所以2sin(2ω+φ)=2,得2ω+φ=+2k2π,k2∈Z,
则φ=-+,k1,k2∈Z,
因为|φ|<,所以φ=-,ω=+k2π,k2∈Z,
又0<ω<,所以ω=,
所以函数f(x)=2sin,
令+2kπ≤x-≤+2kπ,k∈Z,解得2+6k≤x≤5+6k,k∈Z,
因为(-3,3)∩{x|2+6k≤x≤5+6k,k∈Z}=(-3,-1]∪[2,3),
所以函数f(x)在区间(-3,3)上的单调递减区间为(-3,-1]和[2,3).
[B级 综合练]
11.(多选)已知P(1,2)是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)图象的一个最高点,B,C是与P相邻的两个最低点.设∠BPC=θ,若tan=,则下列说法正确的是( )
A.A=2
B.f(x)的最小正周期为6
C.φ=
D.是f(x)图象的一个对称中心
解析:选ABD.如图,连接BC,设BC的中点为D,E,F为与点P最近的函数f(x)的图象与x轴的交点,即函数f(x)图象的两个对称中心,连接PD,则由题意知A=2,A正确;|PD|=4,∠BPD=∠CPD=,PD⊥BC,所以tan∠BPD=tan ===,所以|BD|=3,|BC|=6,f(x)的最小正周期为6,B正确;ω==,×1+φ=+2kπ,k∈Z,φ=+2kπ,k∈Z,又|φ|<,故φ=,C错误;由函数f(x)图象的对称性知,xF=1+=,所以F是f(x)图象的一个对称中心,D正确.故选ABD.
12.已知f(x)=sin(ω>0),f=f,且f(x)在区间上有最小值,无最大值,则ω=________.
解析:依题意,当x==时,f(x)有最小值,
所以sin=-1,所以ω+=2kπ+(k∈Z).
所以ω=8k+(k∈Z),
因为f(x)在区间上有最小值,无最大值,
所以-≤,即ω≤12,
令k=0,得ω=.
答案:
13.如图,点A,B分别是圆心在坐标原点,半径为1和2的圆上的动点.动点A从初始位置A0开始,按逆时针方向以角速度2 rad/s做圆周运动,同时点B从初始位置B0(2,0)开始,按顺时针方向以角速度2 rad/s做圆周运动.记t时刻,点A,B的纵坐标分别为y1,y2.
(1)求t=时,A,B两点间的距离;
(2)若y=y1+y2,求y关于时间t(t>0)的函数关系式,并求当t∈时,y的取值范围.
解:(1)连接AB,OA,OB,当t=时,∠xOA=+=,∠xOB=,所以∠AOB=.
又OA=1,OB=2,所以AB2=12+22-2×1×2cos=7,
即A,B两点间的距离为.
(2)依题意,y1=sin,y2=-2sin 2t,
所以y=sin-2sin 2t=cos 2t-sin 2t=cos,
即函数关系式为y=cos(t>0),
当t∈时,2t+∈,所以cos∈,故当t∈时,y∈.
14.已知函数f(x)=sin ωxcos ωx+cos2ωx+b+1.
(1)若函数f(x)的图象关于直线x=对称,且ω∈[0,3],求函数f(x)的单调递增区间;
(2)在(1)的条件下,当x∈[0,]时,函数f(x)有且只有一个零点,求实数b的取值范围.
解:(1)函数f(x)=sin ωxcos ωx+cos2ωx+b+1
=sin 2ωx++b+1=sin(2ωx+)++b.
因为函数f(x)的图象关于直线x=对称,所以2ω·+=kπ+,k∈Z,且ω∈[0,3],所以ω=1.
由2kπ-≤2x+≤2kπ+(k∈Z),解得kπ-≤x≤kπ+(k∈Z),所以函数f(x)的单调递增区间为[kπ-,kπ+](k∈Z).
(2)由(1)知f(x)=sin(2x+)++b.
因为x∈[0,],所以2x+∈[,].
当2x+∈[,],即x∈[0,]时,函数f(x)单调递增;当2x+∈[,],即x∈[,]时,函数f(x)单调递减.
又f(0)=f(),所以当f()>0≥f()或f()=0时,函数f(x)有且只有一个零点,即sin≤-b-
15.(多选)水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,一个水斗从点A(3,-3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过t秒后,水斗旋转到点P,设点P的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ),则下列叙述正确的是( )
A.R=6,ω=,φ=-
B.当t∈[35,55]时,点P到x轴的距离的最大值为6
C.当t∈[10,25]时,函数y=f(t)单调递减
D.当t=20时,|PA|=6
解析:选ABD.由题意可知T=60,所以=60,解得ω=,又从点A(3,-3)出发,所以R=6,6sin φ=-3,又|φ|<,所以φ=-,故A正确;y=6sin,当t∈[35,55]时,t-∈,则sin∈[-1,0],y∈[-6,0],点P到x轴的距离为|y|,所以点P到x轴的距离的最大值为6,故B正确;当t∈[10,25]时,t-∈,所以函数y=6sin在[10,25]上不单调,故C不正确;当t=20时,t-=,则y=6sin =6,且x=6cos =0,所以P(0,6),则|PA|==6,故D正确.综上,正确的是ABD.
16.如图,将绘有函数f(x)=sin(ωx+)(ω>0)部分图象的纸片沿x轴折成直二面角,若A,B之间的空间距离为,则f(-1)=________.
解析:由题设并结合图形可知,
AB= =
==,得=4,则ω=,
所以f(-1)=sin(-+)=sin =.
答案:
新高考数学一轮复习课时跟踪检测(二十一)函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 (含解析): 这是一份新高考数学一轮复习课时跟踪检测(二十一)函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 (含解析),共10页。试卷主要包含了基础练——练手感熟练度,综合练——练思维敏锐度,自选练——练高考区分度等内容,欢迎下载使用。
新高考数学一轮复习讲练测专题5.5函数y=Asin(ωx+φ)的图象及其应用(练)(含解析): 这是一份新高考数学一轮复习讲练测专题5.5函数y=Asin(ωx+φ)的图象及其应用(练)(含解析),共28页。试卷主要包含了【多选题】等内容,欢迎下载使用。
(新高考)高考数学一轮复习素养练习 第5章 第5讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第5章 第5讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 (含解析),共18页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。