(新高考)高考数学一轮复习课件第2章§2.3《函数的奇偶性、周期性与对称性》(含解析)
展开
这是一份(新高考)高考数学一轮复习课件第2章§2.3《函数的奇偶性、周期性与对称性》(含解析),共60页。PPT课件主要包含了考试要求,落实主干知识,函数的奇偶性,f-x=fx,最小正数,探究核心题型,故fx为奇函数,思维升华,-2-x-2x+1,函数的周期性等内容,欢迎下载使用。
1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义.2.会依据函数的性质进行简单的应用.
LUOSHIZHUGANZHISHI
f(-x)=-f(x)
2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且____________,那么函数y=f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个____的正数,那么这个_________就叫做f(x)的最小正周期.
f(x+T)=f(x)
1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).
3.函数对称性常用结论(1)f(a-x)=f(a+x)⇔f(-x)=f(2a+x)⇔f(x)=f(2a-x)⇔f(x)的图象关于直线x=a对称.
(3)f(2a-x)=-f(x)+2b⇔f(x)的图象关于点(a,b)对称.
判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)为奇函数,则f(0)=0.( )(2)若f(x)为奇函数,g(x)为偶函数,则y=f(x)g(x)为奇函数.( )(3)若T是函数f(x)的一个周期,则kT(k∈N*)也是函数的一个周期.( )(4)若函数f(x)满足f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称.( )
1.下列函数中为偶函数的是A.y=x2sin x B.y=x2cs xC.y=|ln x| D.y=2-x
根据偶函数的定义知偶函数满足f(-x)=f(x)且定义域关于原点对称,A选项为奇函数;B选项为偶函数;C选项定义域为(0,+∞),不具有奇偶性;D选项既不是奇函数,也不是偶函数.
2.若f(x)是定义在R上的周期为2的函数,当x∈[0,2)时,f(x)=2-x,则f(2 023)=___.
∵f(x)的周期为2,
3.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)
相关课件
这是一份新高考数学一轮复习讲练测课件第2章§2.3函数的奇偶性、周期性 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,函数的奇偶性,f-x=fx,最小正数,1求实数m的值,ln2等内容,欢迎下载使用。
这是一份高考复习 2.3 函数的奇偶性、周期性与对称性课件PPT,共59页。PPT课件主要包含了f-x=fx,最小的正数,最小正数,答案BC,答案D,答案BD,答案C,答案A,答案B,答案ABC等内容,欢迎下载使用。
这是一份新高考数学一轮复习课件 第2章 §2.3 函数的奇偶性、周期性与对称性,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。