上海市嘉定区名校2021-2022学年中考数学五模试卷含解析
展开
这是一份上海市嘉定区名校2021-2022学年中考数学五模试卷含解析,共25页。试卷主要包含了2018的相反数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
A.若AB=CD,则四边形ABCD一定是等腰梯形;
B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
C.若,则四边形ABCD一定是矩形;
D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
2.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )
A.30° B.45° C.50° D.75°
3.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是( )
A. B. C. D.
4.如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )
A. B. C. D.
5.下列运算正确的是( )
A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a5
6.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )
A. B. C. D.1
7.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()
A.37 B.38 C.50 D.51
8.2018的相反数是( )
A. B.2018 C.-2018 D.
9.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
A. B. C. D.
10.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )
A.2+ B.2+2 C.4 D.3
11.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )
A. B. C. D.
12.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是( )
A.40° B.65° C.70° D.80°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.
14.若4a+3b=1,则8a+6b-3的值为______.
15.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________
16.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.
17.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 ______ y2.(填“>”,“
【解析】
分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.
详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.
故答案为>.
点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.
18、x(x+2)(x﹣2)
【解析】
试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)(2)详见解析;(3).
【解析】
(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.
【详解】
经过测量,时,y值为
根据题意,画出函数图象如下图:
根据图象,可以发现,y的取值范围为:,
,
故答案为.
【点睛】
本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.
20、(1);(2)∠CDE=2∠A.
【解析】
(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;
(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.
【详解】
(1)∵AB是⊙O的直径,
∴∠ACB=90°,
在Rt△ABC中,由勾股定理得:
AB=
=,
∴AO=AB=.
∵OD⊥AB,
∴∠AOE=∠ACB=90°,
又∵∠A=∠A,
∴△AOE∽△ACB,
∴,
∴OE=
=.
(2)∠CDE=2∠A.理由如下:
连结OC,
∵OA=OC,
∴∠1=∠A,
∵CD是⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∴∠2+∠CDE=90°,
∵OD⊥AB,
∴∠2+∠3=90°,
∴∠3=∠CDE.
∵∠3=∠A+∠1=2∠A,
∴∠CDE=2∠A.
考点:切线的性质;探究型;和差倍分.
21、(1)k=10,b=3;(2).
【解析】
试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.
试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10
把x=2,y=5代入y=x+b,得b=3
(2)、∵y=x+3 ∴当y=0时,x=-3, ∴OB=3 ∴S=×3×5=7.5
考点:一次函数与反比例函数的综合问题.
22、(1)答案见解析(2)36°(3)4550名
【解析】
试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;
(2)利用360乘以对应的比例即可求解;
(3)利用总人数6500乘以对应的比例即可求解.
(1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人,
;
(2)360×=36°;
(3)反对中学生带手机的大约有6500×=4550(名).
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.
23、(1)y=;(2)(4,0)或(0,0)
【解析】
(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;
(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.
【详解】
解:(1)把x=1代入y=2x﹣4,可得
y=2×1﹣4=2,
∴A(1,2),
把(1,2)代入y=,可得k=1×2=6,
∴反比例函数的解析式为y=;
(2)根据题意可得:2x﹣4=,
解得x1=1,x2=﹣1,
把x2=﹣1,代入y=2x﹣4,可得
y=﹣6,
∴点B的坐标为(﹣1,﹣6).
设直线AB与x轴交于点C,
y=2x﹣4中,令y=0,则x=2,即C(2,0),
设P点坐标为(x,0),则
×|x﹣2|×(2+6)=8,
解得x=4或0,
∴点P的坐标为(4,0)或(0,0).
【点睛】本题主要考查用待定系数法求
一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
24、(1)共调查了50名学生;统计图见解析;(2)72°;(3).
【解析】
(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;
(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;
(3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.
【详解】
解:(1)14÷28%=50,
∴本次共调查了50名学生.
补全条形统计图如下.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.
(3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.
共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,
∴抽取的2名学生恰好来自同一个班级的概率P==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
25、(1)作图见解析,,;(2)①k=6;②.
【解析】
(1)根据题意,画出对应的图形,根据旋转的性质可得,,从而求出点E、F的坐标;
(2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得(Ⅰ);
①根据等角对等边可得,可列方程(Ⅱ),然后联立方程即可求出点D的坐标,从而求出k的值;
②用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令△=0即可求出m的值,从而求出k的值.
【详解】
解:(1)点 , ,
,,
如图1,
由旋转知,,,,
点在轴正半轴上,点在轴负半轴上,
,;
(2)过点作轴于,过点作轴于,过点作于,
,,
,
,
,
,
,
,
,
,
,,,
,,
,
设,
,
,,
点,在双曲线上,
,
(Ⅰ)
①,
,
,
,
(Ⅱ),
联立(Ⅰ)(Ⅱ)解得:,,
;
②如图3,
,,
,,
,
,
直线的解析式为(Ⅲ),
双曲线(Ⅳ),
联立(Ⅲ)(Ⅳ)得:,
即:,
△,
直线与双曲线有唯一公共点,
△,
△,
(舍或,
,
.
故答案为:.
【点睛】
此题考查的是反比例函数与一次函数的综合大题,掌握利用待定系数法求反比例函数解析式、一次函数解析式、旋转的性质、相似三角形的判定及性质是解决此题的关键.
26、(1)125°;(2)125°;(3)∠BOC=90°+n°.
【解析】
如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+∠A,然后根据此结论分别解决(1)、(2)、(3).
【详解】
如图,
∵BO、CO是角平分线,
∴∠ABC=2∠1,∠ACB=2∠2,
∵∠ABC+∠ACB+∠A=180°,
∴2∠1+2∠2+∠A=180°,
∵∠1+∠2+∠BOC=180°,
∴2∠1+2∠2+2∠BOC=360°,
∴2∠BOC﹣∠A=180°,
∴∠BOC=90°+∠A,
(1)∵∠ABC=50°,∠ACB=60°,
∴∠A=180°﹣50°﹣60°=70°,
∴∠BOC=90°+×70°=125°;
(2)∠BOC=90°+∠A=125°;
(3)∠BOC=90°+n°.
【点睛】
本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
27、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【解析】
设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.
【详解】
解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.
根据题意得:
解得:x=1.
经检验:x=1是原方程的解且符合实际问题的意义.
∴1.2x=1.2×1=2.
答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【点睛】
此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.
相关试卷
这是一份2024年上海市嘉定区中考数学二模试卷(含详细答案解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年上海市嘉定区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年上海市嘉定区中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。