上海市闵行区达标名校2022年中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和( )
A.增加(n﹣2)×180° B.减小(n﹣2)×180°
C.增加(n﹣1)×180° D.没有改变
2.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为( )
A.10° B.15° C.20° D.25°
3.不等式组 的整数解有( )
A.0个 B.5个 C.6个 D.无数个
4.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是( )
A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0
5.某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )
A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣5
6.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:)
A.30.6米 B.32.1 米 C.37.9米 D.39.4米
7.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )
A.91,88 B.85,88 C.85,85 D.85,84.5
8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
9.下列计算中,错误的是( )
A.; B.; C.; D..
10.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.
12.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.
13.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.
14.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .
15.新定义[a,b]为一次函数(其中a≠0,且a,b为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程的解为 .
16.如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30°,迎水坡的坡度为1∶2,那么坝底的长度等于________米(结果保留根号)
17.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
(1)求证:四边形OCAD是平行四边形;
(2)填空:①当∠B= 时,四边形OCAD是菱形;
②当∠B= 时,AD与相切.
19.(5分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
20.(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.
七年级英语口语测试成绩统计表
成绩分
等级
人数
A
12
B
m
C
n
D
9
请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上包括B 级的学生人数.
21.(10分)某初中学校组织400 位同学参加义务植树活动,每人植树的棵数在5至10之间,甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:
表1:甲调查九年级30位同学植树情况统计表(单位:棵)
每人植树情况
7
8
9
10
人数
3
6
15
6
频率
0.1
0.2
0.5
0.2
表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)
每人植树情况
6
7
8
9
10
人数
3
6
3
11
6
频率
0.1
0.2
0.1
0.4
0.2
根据以上材料回答下列问题:
(1)表1中30位同学植树情况的中位数是 棵;
(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是 ,正确的数据应该是 ;
(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动400位同学一共植树多少棵?
22.(10分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.
(1)求3、4两月平均每月下调的百分率;
(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?
(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.
23.(12分)先化简,再求值:,其中a为不等式组的整数解.
24.(14分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
①当∠DAE= 时,四边形ADFP是菱形;
②当∠DAE= 时,四边形BFDP是正方形.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据多边形的外角和等于360°,与边数无关即可解答.
【详解】
∵多边形的外角和等于360°,与边数无关,
∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.
故选D.
【点睛】
本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.
2、A
【解析】
先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
【详解】
由图可得,∠CDE=40° ,∠C=90°,
∴∠CED=50°,
又∵DE∥AF,
∴∠CAF=50°,
∵∠BAC=60°,
∴∠BAF=60°−50°=10°,
故选A.
【点睛】
本题考查了平行线的性质,熟练掌握这一点是解题的关键.
3、B
【解析】
先解每一个不等式,求出不等式组的解集,再求整数解即可.
【详解】
解不等式x+3>0,得x>﹣3,
解不等式﹣x≥﹣2,得x≤2,
∴不等式组的解集为﹣3<x≤2,
∴整数解有:﹣2,﹣1,0,1,2共5个,
故选B.
【点睛】
本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.
4、D
【解析】
由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.
【详解】
解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)
∴该函数是开口向上的,a>0
∵y=ax2+bx﹣2过点(1,0),
∴a+b-2=0.
∵a>0,
∴2-b>0.
∵顶点在第三象限,
∴-<0.
∴b>0.
∴2-a>0.
∴0 ∴0 ∴t=a-b-2.
∴﹣4<t<0.
【点睛】
本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.
5、A
【解析】
试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.
考点:科学记数法—表示较小的数.
6、D
【解析】
解:延长AB交DC于H,作EG⊥AB于G,如图所示,则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故选D.
7、D
【解析】
试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,
把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.
考点:众数,中位数
点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题
8、C
【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.
考点:用列表法(或树形图法)求概率.
9、B
【解析】
分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.
详解:A.,故A正确;
B.,故B错误;
C..故C正确;
D.,故D正确;
故选B.
点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.
10、A
【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
故选A.
考点:三视图
视频
二、填空题(共7小题,每小题3分,满分21分)
11、m≤1.
【解析】
由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
∴关于x的一元二次方程x1+1x+m−1=0有解,
∴△=11−4(m−1)=8−4m≥0,
解得:m≤1.
故答案为:m≤1.
【点睛】
本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.
12、6
【解析】
已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1, x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.
【详解】
∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,
∴x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,
即x12=2 x1+1, x22=2 x2+1,
∴=
故答案为6.
【点睛】
本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.
13、1.
【解析】
试题分析:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案为1.
考点:等腰直角三角形;平行线的性质.
14、(10,3)
【解析】
根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.
【详解】
∵四边形AOCD为矩形,D的坐标为(10,8),
∴AD=BC=10,DC=AB=8,
∵矩形沿AE折叠,使D落在BC上的点F处,
∴AD=AF=10,DE=EF,
在Rt△AOF中,OF= =6,
∴FC=10−6=4,
设EC=x,则DE=EF=8−x,
在Rt△CEF中,EF2=EC2+FC2,
即(8−x)2=x2+42,
解得x=3,即EC的长为3.
∴点E的坐标为(10,3).
15、.
【解析】
试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,
得到y=3x+m+2为正比例函数,即m+2=0,
解得:m=-2,
则分式方程为,
去分母得:2-(x-1)=2(x-1),
去括号得:2-x+1=2x-2,
解得:x=,
经检验x=是分式方程的解
考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.
16、
【解析】
过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线段、的长,然后与相加即可求得的长.
【详解】
如图,作,,垂足分别为点E,F,则四边形是矩形.
由题意得,米,米,,斜坡的坡度为1∶2,
在中,∵,
∴米.
在Rt△DCF中,∵斜坡的坡度为1∶2,
∴,
∴米,
∴(米).
∴坝底的长度等于米.
故答案为.
【点睛】
此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.
17、1.
【解析】
由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数
【详解】
∵PA,PB是⊙O是切线,
∴PA=PB.
又∵∠P=46°,
∴∠PAB=∠PBA=.
又∵PA是⊙O是切线,AO为半径,
∴OA⊥AP.
∴∠OAP=90°.
∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.
故答案为:1
【点睛】
此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)① 30°,② 45°
【解析】
试题分析:(1)根据已知条件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论;
(2)①若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出∠即可求得
②AD与相切,根据切线的性质得出根据AD∥OC,内错角相等得出从而求得
试题解析:(方法不唯一)
(1)∵OA=OC,AD=OC,
∴OA=AD,
∴∠OAC=∠OCA,∠AOD=∠ADO,
∵OD∥AC,
∴∠OAC=∠AOD,
∴∠OAC=∠OCA=∠AOD=∠ADO,
∴∠AOC=∠OAD,
∴OC∥AD,
∴四边形OCAD是平行四边形;
(2)①∵四边形OCAD是菱形,
∴OC=AC,
又∵OC=OA,
∴OC=OA=AC,
∴
∴
故答案为
②∵AD与相切,
∴
∵AD∥OC,
∴
∴
故答案为
19、(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
【解析】
试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.
试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),
∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
考点:(1)正方形;(2)全等三角形的判定与性质.
20、 (1)60人;(2)144°;(3)288人.
【解析】
等级人数除以其所占百分比即可得;
先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;
总人数乘以A、B等级百分比之和即可得.
【详解】
解:本次被抽取参加英语口语测试的学生共有人;
级所占百分比为,
级对应的百分比为,
则扇形统计图中 C 级的圆心角度数为;
人,
答:估计英语口语达到 B级以上包括B 级的学生人数为288人.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体.
21、(1)9;(2)11,12;(3)3360棵
【解析】
(1)30位同学的植树量中第15个、16个数都是9,即可得到植树的中位数;
(2)根据频率相加得1确定频率正确,计算频数即可确定错误的数据是11,正确的硬是12;
(3)样本数据应体现机会均等由此得到乙同学所抽取的样本更好,再根据部分计算总体的公式即可得到答案.
【详解】
(1)表1中30位同学植树情况的中位数是9棵,
故答案为:9;
(2)表2的最后两列中,错误的数据是 11,正确的数据应该是30×0.4=12;
故答案为:11,12;
(3)乙同学所抽取的样本能更好反映此次植树活动情况,
(3×6+6×7+3×8+12×9+6×10)÷30×400=3360(棵),
答:本次活动400位同学一共植树3360棵.
【点睛】
此题考查统计的计算,掌握中位数的计算方法,部分的频数的计算方法,依据样本计算总体的方法是解题的关键.
22、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析
【解析】
(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;
(2)分别计算出方案一与方案二的费用相比较即可;
(3)根据(1)的答案计算出6月份的价格即可得到答案.
【详解】
(1)设3、4两月平均每月下调的百分率为x,
由题意得:7500(1﹣x)2=6075,
解得:x1=0.1=10%,x2=1.9(舍),
答:3、4两月平均每月下调的百分率是10%;
(2)方案一:6075×100×0.98=595350(元),
方案二:6075×100﹣100×1.5×24=603900(元),
∵595350<603900,
∴方案一更优惠,小颖选择方案一:打9.8折购买;
(3)不会跌破4800元/平方米
因为由(1)知:平均每月下调的百分率是10%,
所以:6075(1﹣10%)2=4920.75(元/平方米),
∵4920.75>4800,
∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.
【点睛】
此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.
23、,1
【解析】
先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.
【详解】
解:原式=[﹣]
=
=,
∵不等式组的解为<a<5,其整数解是2,3,4,
a不能等于0,2,4,
∴a=3,
当a=3时,原式==1.
【点睛】
本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
24、(1)详见解析;(2)①67.5°;②90°.
【解析】
(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
②根据四边形BFDP是正方形,可以求得∠DAE的度数.
【详解】
(1)证明:连接OD,如图所示,
∵射线DC切⊙O于点D,
∴OD⊥CD,
即∠ODF=90°,
∵∠AED=45°,
∴∠AOD=2∠AED=90°,
∴∠ODF=∠AOD,
∴CD∥AB;
(2)①连接AF与DP交于点G,如图所示,
∵四边形ADFP是菱形,∠AED=45°,OA=OD,
∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
∴∠AGE=90°,∠DAO=45°,
∴∠EAG=45°,∠DAG=∠PEG=22.5°,
∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
故答案为:67.5°;
②∵四边形BFDP是正方形,
∴BF=FD=DP=PB,
∠DPB=∠PBF=∠BFD=∠FDP=90°,
∴此时点P与点O重合,
∴此时DE是直径,
∴∠EAD=90°,
故答案为:90°.
【点睛】
本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
2024年上海市闵行区中考数学三模试卷(含解析): 这是一份2024年上海市闵行区中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年上海市闵行区中考数学二模试卷(含解析): 这是一份2023年上海市闵行区中考数学二模试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年上海市闵行区名校中考考前最后一卷数学试卷含解析: 这是一份2022年上海市闵行区名校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列调查中适宜采用抽样方式的是,九年级等内容,欢迎下载使用。