四川省德阳市中学江县2021-2022学年中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )
A.6π B.4π C.8π D.4
2.若x﹣2y+1=0,则2x÷4y×8等于( )
A.1 B.4 C.8 D.﹣16
3.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )
A.40° B.36° C.50° D.45°
4.不等式组的解集是( )
A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
5.如图,在▱ABCD中,AB=1,AC=4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为( )
A.2 B.3 C.4 D.6
6.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:
得分(分)
60
70
80
90
100
人数(人)
7
12
10
8
3
则得分的众数和中位数分别为( )
A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分
7.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.
下列判断: ①当x>2时,M=y2;
②当x<0时,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,则x=" 1" .
其中正确的有
A.1个 B.2个 C.3个 D.4个
8.下列四个实数中,比5小的是( )
A. B. C. D.
9.下列计算结果等于0的是( )
A. B. C. D.
10.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).
A.众数 B.中位数 C.平均数 D.方差
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
12.若二次函数y=-x2-4x+k的最大值是9,则k=______.
13.分解因式:2x2-8x+8=__________.
14.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____
15.已知△ABC中,BC=4,AB=2AC,则△ABC面积的最大值为_______.
16.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
三、解答题(共8题,共72分)
17.(8分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
18.(8分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.
(1)求点和点的坐标;
(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .
①当时,求关于的函数关系式;
②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;
③直接写出②中的最大值是 .
19.(8分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.
20.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
21.(8分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.
求证:FC∥AB.
22.(10分)△ABC在平面直角坐标系中的位置如图所示.
画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
23.(12分)计算:2sin30°﹣|1﹣|+()﹣1
24.为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
那么它的表面积=2π×2+π×1×1×2=6π,故选A.
2、B
【解析】
先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.
【详解】
原式=2x÷22y×23,
=2x﹣2y+3,
=22,
=1.
故选:B.
【点睛】
本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.
3、B
【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
【详解】
∵四边形ABCD是平行四边形,
∴∠D=∠B=52°,
由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,
∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,
∴∠FED′=108°﹣72°=36°.
故选B.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.
4、D
【解析】
试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.
5、C
【解析】
利用平行四边形的性质得出△ADF∽△EBF,得出=,再根据勾股定理求出BO的长,进而得出答案.
【详解】
解:∵在□ABCD中,对角线AC、BD相交于O,
∴BO=DO,AO=OC,AD∥BC,
∴△ADF∽△EBF,
∴=,
∵AC=4,
∴AO=2,
∵AB=1,AC⊥AB,
∴BO===3,
∴BD=6,
∵E是BC的中点,
∴==,
∴BF=2, FD=4.
故选C.
【点睛】
本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.
6、C
【解析】
解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.
故选C.
【点睛】
本题考查数据分析.
7、B
【解析】
试题分析:∵当y1=y2时,即时,解得:x=0或x=2,
∴由函数图象可以得出当x>2时, y2>y1;当0<x<2时,y1>y2;当x<0时, y2>y1.∴①错误.
∵当x<0时, -直线的值都随x的增大而增大,
∴当x<0时,x值越大,M值越大.∴②正确.
∵抛物线的最大值为4,∴M大于4的x值不存在.∴③正确;
∵当0<x<2时,y1>y2,∴当M=2时,2x=2,x=1;
∵当x>2时,y2>y1,∴当M=2时,,解得(舍去).
∴使得M=2的x值是1或.∴④错误.
综上所述,正确的有②③2个.故选B.
8、A
【解析】
首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.
【详解】
解:A、∵5<<6,
∴5﹣1<﹣1<6﹣1,
∴﹣1<5,故此选项正确;
B、∵
∴,故此选项错误;
C、∵6<<7,
∴5<﹣1<6,故此选项错误;
D、∵4<<5,
∴,故此选项错误;
故选A.
【点睛】
考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.
9、A
【解析】
各项计算得到结果,即可作出判断.
【详解】
解:A、原式=0,符合题意;
B、原式=-1+(-1)=-2,不符合题意;
C、原式=-1,不符合题意;
D、原式=-1,不符合题意,
故选:A.
【点睛】
本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.
10、B
【解析】
分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.
详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选B.
点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数
二、填空题(本大题共6个小题,每小题3分,共18分)
11、15π
【解析】
【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
【详解】设圆锥母线长为l,∵r=3,h=4,
∴母线l=,
∴S侧=×2πr×5=×2π×3×5=15π,
故答案为15π.
【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
12、5
【解析】y=−(x−2)2+4+k,
∵二次函数y=−x2−4x+k的最大值是9,
∴4+k=9,解得:k=5,
故答案为:5.
13、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
【点睛】
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
14、
【解析】
设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论.
【详解】
设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).
∵2018=4×504+2,∴K2018为(1009,0).
故答案为:(),(1009,0).
【点睛】
本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.
15、
【解析】
设AC=x,则AB=2x,根据面积公式得S△ABC=2x ,由余弦定理求得 cosC代入化简S△ABC= ,由三角形三边关系求得 ,由二次函数的性质求得S△ABC取得最大值.
【详解】
设AC=x,则AB=2x,根据面积公式得:c= =2x.由余弦定理可得: ,
∴S△ABC=2x=2x=
由三角形三边关系有 ,解得,
故当时, 取得最大值,
故答案为: .
【点睛】
本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.
16、5 1.
【解析】
∵一组数据:3,a,4,6,7,它们的平均数是5,
∴,
解得,,
∴=1.
故答案为5,1.
三、解答题(共8题,共72分)
17、(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.
【解析】
【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;
(2)在(1)的基础上分段表示利润,讨论最值;
(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.
【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得
32=12m﹣76m,
解得m=,
当第26天的售价为25元/千克时,代入y=n,
则n=25,
故答案为m=,n=25;
(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,
当1≤x<20时,
W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,
∴当x=18时,W最大=968,
当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,
∵28>0,
∴W随x的增大而增大,
∴当x=30时,W最大=952,
∵968>952,
∴当x=18时,W最大=968;
(3)当1≤x<20时,令﹣2x2+72x+320=870,
解得x1=25,x2=11,
∵抛物线W=﹣2x2+72x+320的开口向下,
∴11≤x≤25时,W≥870,
∴11≤x<20,
∵x为正整数,
∴有9天利润不低于870元,
当20≤x≤30时,令28x+112≥870,
解得x≥27,
∴27≤x≤30
∵x为正整数,
∴有3天利润不低于870元,
∴综上所述,当天利润不低于870元的天数共有12天.
【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.
18、(1);(2)①;②当时,;
当时, ;当时, ;③.
【解析】
(1)根据等腰直角三角形的性质即可解决问题;
(2)首先求出直线OA、AB、OC、BC的解析式.①求出R、Q的坐标,利用两点间距离公式即可解决问题;②分三种情形分别求解即可解决问题;③利用②中的函数,利用配方法求出最值即可;
【详解】
解:(1)由题意是等腰直角三角形,
(2) ,
线直的解析式为,直线的解析式
时,直线恰好过点.
,
直线的解析式为,直线的解析式为
①当时,,
②当时,
当时,
当时,
③当时,
,
时, 的最大值为.
当时,
.
时, 的值最大,最大值为.
当时,,
时, 的最大值为,
综上所述,最大值为
故答案为.
【点睛】
本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.
19、(1)PD是⊙O的切线.证明见解析.(2)1.
【解析】
试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;
(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.
试题解析:(1)如图,PD是⊙O的切线.
证明如下:
连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.
(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.
考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.
20、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
21、答案见解析
【解析】
利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.
【详解】
解:∵E是AC的中点,∴AE=CE.
在△ADE与△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.
【点睛】
本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.
22、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
【解析】
(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
【详解】
(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.
【点睛】
本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
23、4﹣
【解析】
原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.
【详解】
原式=2×﹣( ﹣1)+2
=1﹣+1+2
=4﹣.
【点睛】
本题考查了实数的运算,熟练掌握运算法则是解本题的关键.
24、 (1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.
【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
【详解】
(1)过点C作AB的垂线CD,垂足为D,
∵AB⊥CD,sin30°=,BC=80千米,
∴CD=BC•sin30°=80×=40(千米),
AC=(千米),
AC+BC=80+(千米),
答:开通隧道前,汽车从A地到B地要走(80+)千米;
(2)∵cos30°=,BC=80(千米),
∴BD=BC•cos30°=80×(千米),
∵tan45°=,CD=40(千米),
∴AD=(千米),
∴AB=AD+BD=40+(千米),
∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).
答:汽车从A地到B地比原来少走的路程为 [40+40]千米.
【点睛】
本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
四川省德阳市中学江县2021-2022学年中考联考数学试卷含解析: 这是一份四川省德阳市中学江县2021-2022学年中考联考数学试卷含解析,共20页。
2021-2022学年山东省青岛育才中学中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年山东省青岛育才中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列因式分解正确的是,方程的解是等内容,欢迎下载使用。
2021-2022学年吉林省柳河县第三中学中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年吉林省柳河县第三中学中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算错误的是等内容,欢迎下载使用。