初中数学冀教版八年级上册第十七章 特殊三角形17.1 等腰三角形示范课ppt课件
展开1.探索等边三角形的性质.
2.能运用等边三角形的性质进行计算和证明.
小明想制作一个三角形的相框,他有四根木条长度分别为10cm,10cm,10cm,6cm,你能帮他设计出几种形状的三角形?
在等腰三角形中,有一种特殊的情况,就是底与腰相等,即三角形的三边相等,我们把三条边都相等的三角形叫作等边三角形.
有两条边相等的三角形叫做等腰三角形
问题1 等边三角形的三个内角之间有什么关系?
结论: 等边三角形的三个内角都相等,并且每一个角都等于60°.
已知:AB=AC=BC , 求证:∠A= ∠ B=∠C= 60°.
证明: ∵AB=AC. ∴∠B=∠C .(等边对等角) 同理 ∠A=∠C . ∴∠A=∠B=∠C. ∵ ∠A+∠B+∠C=180°, ∴ ∠A= ∠B= ∠C=60 °.
问题2 等边三角形有“三线合一”的性质吗?等边三角形有几条对称轴?
结论:等边三角形每条边上的中线,高和所对角的平分线都“三线合一”.
顶角的平分线、底边的高底边的中线三线合一
每一边上的中线、高和这一边所对的角的平分线互相重合
底边上的中线、高和顶角的平分线互相重合
例1 如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.
解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=60°-40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.
【点睛】等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常应用在求三角形角度的问题上,一般需结合“等边对等角”、三角形的内角和与外角的性质.
如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.
证明:∵△ABC是等边三角形,BD是角平分线,∴∠ABC=∠ACB=60°,∠DBC=30°.又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).
例2 △ABC为正三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BM=CN,BN与AM相交于Q点,∠BQM等于多少度?
解:∵△ABC为正三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.又∵BM=CN,∴△AMB≌△BNC(SAS),∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM =∠ABQ+∠CBN=∠ABC=60°.
【点睛】此题属于等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质判定三角形全等,而后利用全等及等边三角形的性质,求角度或证明边相等.
如图,等边△ABC中,D、E、F分别是各边上的一点,且AD=BE=CF.求证:△DEF是等边三角形.
证明:∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是等边三角形.
2.如图,等边三角形ABC的三条角平分线交于点O,DE∥BC,则这个图形中的等腰三角形共有( )
A. 4个 B. 5个 C. 6个 D. 7个
1.等边三角形的两条高线相交成钝角的度数是( )A.105° B.120° C.135° D.150°
3.在等边△ABC中,BD平分∠ABC,BD=BF,则∠CDF的度数是( )A.10° B.15° C.20° D.25°
4.如图,△ABC和△ADE都是等边三角形,已知△ABC的周长为18cm,EC =2cm,则△ADE的周长是 cm.
5.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB为边在△ABC外作等边△ABD,E是AB的中点,连接CE并延长交AD于F.求证:△AEF≌△BEC.
证明:∵△ABD是等边三角形,∴∠DAB=60°,∵∠CAB=30°,∠ACB=90°,∴∠EBC=180°-90°-30°=60°,∴∠FAE=∠EBC.∵E为AB的中点,∴AE=BE.又∵ ∠AEF=∠BEC, ∴△AEF≌△BEC(ASA).
数学八年级上册17.1 等腰三角形课文内容ppt课件: 这是一份数学八年级上册17.1 等腰三角形课文内容ppt课件,共17页。PPT课件主要包含了三个角都相等,对称轴3条,等边三角形,对称轴1条,两个底角相等,且都是60º,两条边相等,三条边都相等,类比探究,不一定是等内容,欢迎下载使用。
数学八年级上册17.1 等腰三角形教学ppt课件: 这是一份数学八年级上册17.1 等腰三角形教学ppt课件,共23页。PPT课件主要包含了建立数学模型,ABAC,你能验证你的结论吗,∠1∠2,∠B∠C,ADAD,∴ABAC,等腰三角形的判定方法,等角对等边,在△ABC中等内容,欢迎下载使用。
2020-2021学年17.1 等腰三角形多媒体教学课件ppt: 这是一份2020-2021学年17.1 等腰三角形多媒体教学课件ppt,共28页。PPT课件主要包含了ABAC,等腰三角形,AB与AC,BD与CD,AD与AD,∠B与∠C,∠BAD与∠CAD,∠ADB与∠ADC,求证∠BC,还有其他的证法吗等内容,欢迎下载使用。