所属成套资源:(新高考)高考数学二轮专项复习(含详解)
(新高考)高考数学二轮专项复习(八)《解析几何减少运算量的常见技巧》(含详解)
展开这是一份(新高考)高考数学二轮专项复习(八)《解析几何减少运算量的常见技巧》(含详解),共5页。
解析几何减少运算量的常见技巧
技巧一 巧用平面几何性质
已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )
A. B.
C. D.
【解析】 设OE的中点为N,如图,因为MF∥OE,所以有=,=.又因为OE=2ON,所以有=·,解得e==,故选A.
【答案】 A
此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算.
技巧二 设而不求,整体代换
对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.
已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为M(1,-1),则E的标准方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
【解析】 通解:设A(x1,y1),B(x2,y2),
则x1+x2=2,y1+y2=-2,
①-②得+=0,
所以kAB==-=.
又kAB==,所以=.
又9=c2=a2-b2,解得b2=9,a2=18,
所以椭圆E的标准方程为+=1.
优解:由kAB·kOM=-得,×=-得,a2=2b2,
又a2-b2=9,所以a2=18,b2=9,
所以椭圆E的标准方程为+=1.
【答案】 D
本题设出A,B两点的坐标,却不求出A,B两点的坐标,巧妙地表达出直线AB的斜率,通过将直线AB的斜率“算两次”建立几何量之间的关系,从而快速解决问题.
技巧三 巧用“根与系数的关系”,化繁为简
某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.
已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM,AN交椭圆M,N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
【解】 (1)直线AM的斜率为1时,直线AM的方程为y=x+2,代入椭圆方程并化简得5x2+16x+12=0.
解得x1=-2,x2=-,所以M.
(2)设直线AM的斜率为k,直线AM的方程为y=k(x+2),联立方程
化简得(1+4k2)x2+16k2x+16k2-4=0.
则xA+xM=,又xA=-2,
则xM=-xA-=2-=.
同理,可得xN=.
由(1)知若存在定点,则此点必为P.
证明如下:
因为kMP===,
同理可计算得kPN=.
所以直线MN过x轴上的一定点P.
本例在第(2)问中可应用根与系数的关系求出xM=,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.
技巧四 巧妙“换元”减少运算量
变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.
如图,已知椭圆C的离心率为,点A,B,F分别为椭圆的右顶点、上顶点和右焦点,且S△ABF=1-.
(1)求椭圆C的方程;
(2)已知直线l:y=kx+m与圆O:x2+y2=1相切,若直线l与椭圆C交于M,N两点,求△OMN面积的最大值.
【解】 (1)由已知椭圆的焦点在x轴上,设其方程为+=1(a>b>0),则A(a,0),B(0,b),F(c,0)(c=).
由已知可得e2==,所以a2=4b2,
即a=2b,可得c=b①.
S△AFB=×|AF|×|OB|=(a-c)b=1-②.
将①代入②,得(2b-b)b=1-,解得b=1,故a=2,c=.所以椭圆C的方程为+y2=1.
(2)圆O的圆心为坐标原点,半径r=1,由直线l:y=kx+m与圆O:x2+y2=1相切,得=1,故有m2=1+k2③.
由消去y,
得x2+2kmx+m2-1=0.
由题可知k≠0,即(1+4k2)x2+8kmx+4(m2-1)=0,
所以Δ=16(4k2-m2+1)=48k2>0.
设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=.所以|x1-x2|2=(x1+x2)2-4x1x2=-4×=④.
将③代入④中,得|x1-x2|2=,
故|x1-x2|=.所以|MN|=|x1-x2|=×=.
故△OMN的面积S=|MN|×1=××1=.
令t=4k2+1,则t≥1,k2=,代入上式,得
S=2=
==
==,
所以当t=3,即4k2+1=3,解得k=±时,S取得最大值,且最大值为×=1.
破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y=ax+b±(a,b,c,d均为常数,且ac≠0)的函数常用此法求解,但在换元时一定要注意新元的取值范围,以保证等价转化,这样目标函数的值域才不会发生变化.
相关试卷
这是一份新高考数学二轮复习解析几何专项提升练习(12)(含解析),共21页。
这是一份高中数学高考阅读与欣赏(八) 解析几何减少运算量的常见技巧,共5页。
这是一份高考数学二轮复习——谈解析几何问题中控制运算量的三种通法,共5页。