2021湛江第二十一中学高二下学期期中考试数学试卷含答案
展开
这是一份2021湛江第二十一中学高二下学期期中考试数学试卷含答案
2020-2021学年第二学期湛江市第二十一中学期中考试高二数学 时间:120分钟 满分150分学校:___________姓名:___________班级:___________考号:___________一、单选题(本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.)1.已知集合,,则( )A. B. C. D.2.复数z满足,则( )A. B. C. D.3.国际冬奥会和残奥会两个奥运会将于2022年在北京召开,这是我国在2008年成功举办夏季奥运会之后的又一奥运盛事.某电视台计划在奥运会期间某段时间连续播放5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能相邻播放,则不同的播放方式有( )A.120种 B.48种 C.36种 D.18种4.在等差数列中,,,则( )A. B. C. D.5.函数的图像大致是( )A. B.C. D.6.“”是“函数在上为单调函数”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.直线l与双曲线的一条渐近线平行,且l过抛物线的焦点,交C于A,B两点,若,则E的离心率为( )A.2 B. C. D.8.已知是定义在上的奇函数,是的导函数,,且满足,则不等式的解集为( )A. B. C. D. 二、多选题(本大题共4小题,每小题5分,共20分, 在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知圆锥曲线:,若三个数1,,7成等差数列,则的离心率为( )A. B. C. D.10.下列说法中正确的是( )A.设随机变量X服从二项分布,则B.已知随机变量X服从正态分布且,则C.;D.已知随机变量满足,,若,则随着x的增大而减小,随着x的增大而增大11.函数的图象如图,把函数的图象上所有的点向右平移个单位长度,可得到函数的图象,下列结论正确的是( )A.B.函数的最小正周期为C.函数在区间上单调递增 D.函数关于点中心对称12.关于函数,下列判断正确的是( )A.是的极大值点 B.函数有且只有1个零点C.存在正实数,使得成立D.对两个不相等的正实数,,若,则.三、填空题(本大题共4小题,每小题5分,共20分)13.已知m,n均为正数,,,且,则的最小值为____________.14.的展开式中的系数为___________.15.一个口袋中有7个大小相同的球,其中红球3个,黄球2个,绿球2个.现从该口袋中任取3个球,设取出红球的个数为,则______.16.已知是椭圆的两个顶点,直线与直线相交于点,与椭圆相交于两点,若,则斜率的值为______.四、解答题(解答应写出文字说明,证明过程或演算步骤,本大题共6小题,共70分)17.(本题满分10分)的内角的对边分别为.已知.(1)求;(2)若,当的周长最大时,求它的面积.18.(本题满分12分)已知数列满足(,),且,.(1)证明:数列是等比数列;(2)求数列的前项和.19.(本题满分12分)如图,在等腰梯形中,,,将沿着翻折,使得点到点,且.(1)求证:平面平面;(2)求直线与平面所成角的余弦值.20.(本题满分12分)某市教育科学研究院为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三联考理综试卷的得分情况进行了调研.从全市参加考试的考生中随机抽取了100名考生的理综成绩,将数据分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300].并整理得到如图所示的频率分布直方图.(1)根据频率分布直方图,求直方图中x的值;(2)用频率估计概率,从该市所有高三考生的理综成绩中随机抽取3个,记理综成绩位于区间[220,260)内的个数为y,求y的分布列及数学期望E(y);若变量S满足P(μ﹣σ<S≤μ+σ)≈0.6827,且P(μ﹣2σ<S≤μ+2 σ)≈0.9545,则称S近似服从正态分布N(μ,σ2),若该市高三考生的理综成绩近似服从正态分布N(225,225),则给予这套试卷好评,否则差评,试问:这套试卷得到好评还是差评?21.(本题满分12分)已知椭圆:()的左焦点为,且椭圆经过点,直线与椭圆交于,两点(异于点).(1)求椭圆的方程;(2)证明:直线与直线的斜率之和为定值,并求出该定值.22.(本题满分12分)已知函数.(1)若存在极值,求的取值范围;(2)当时,求证:.参考答案一、单项选择题8【详解】,在为减函数,而,∴在上,;在上,;而,∴在上,又函数为奇函数,∴在上.不等式等价于或,∴.故选:D.二、多项选择题12、【详解】A.函数的定义域为,函数的导数,∴在上,,函数单调递减,上,,函数单调递增,∴是的极小值点,即A错误;B.,∴,函数在上单调递减,且,,∴函数有且只有1个零点,即B正确;C.若,可得,令,则,令,则,∴在上,函数单调递增,上函数单调递减,∴,∴,∴在上函数单调递减,函数无最小值,∴不存在正实数,使得恒成立,即C不正确;D.令,则,,令,则,∴在上单调递减,则,令,由,得,则,当时,显然成立,∴对任意两个正实数,,且,若,则,所以.故D正确.故选:BD.三、填空题13、4 14、40 15、 16、或16【详解】由题可知,该椭圆的方程为,直线,的方程分别为,设,其中,联立方程,故,由,知,由点D在直线AB上,则,所以或故答案为:或解答题17、【详解】(1)由正弦定理得:,······················2分,······························4分,;··································5分;(2)由余弦定理得:,···········6分(当且仅当时取等号),·················8分,当时,周长取得最大值,·············9分此时.································10分18、(Ⅰ)证明:∵当时,,······························1分∴. ········································2分∴,.···············································3分∴数列是以2为首项,公比为2的等比数列. ···························4分(Ⅱ)解: ··············································5分∵, ①····················7分∴,② ····················8分①②:, ························10分∴.·································12分19、(1)证明:由等腰梯形,得.又,所以.····························1分又,,则,所以.·········2分又,所以平面,···································3分所以平面平面.·············································4分(2)如图,取的中点,连接,,,由四边形为菱形,且,得,记垂足为,··········5分由(1)知,平面平面,又,所以平面.·······6分同理,平面,所以OA,,两两垂直, 如图,建立以,,为,,轴正方向的空间直角坐标系.则,,所以,,,,所以,,,··········8设平面的法向量为,所以,即,不妨设,得所以平面的一个法向量为.························10分设直线与平面所成角为,,·····················11分∴.····························12分20、(1)由(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,···········1分解得x=0.0075;························································2分(2)用频率估计概率,可得从该市所有高三考生的理综成绩中随机抽取1个,理综成绩位于[220,260)内的概率为(0.0125+0.0075)×20=0.4,···························3分所以随机变量y服从二项分布B~(3,0.4),···································4分故P(y=k)=C3k0.4k0.63﹣k,k=0,1,2,3,故y的分布列为 ··········································································7分则E(y)=3×0.4=1.2;···············································8分(3)记该市高三考生的理综成绩为z,由题意可知,P(210<z<240)≤P(200<z<240)=20×(0.011+0.0125)=0.47<0.6827,···········10分P(195<z<255)≤P(180<z<260)=20×(0.0095+0.011+0.0125+0.0075)=0.81<0.9545,·························11分所以z不近似服从正态分布N(225,225),所以这套试卷得到差评.···············12分21、(1)由题意得:,·········································2分则,······················································3分∴椭圆C的方程为.···········································4分(2)设,联立·················································5分化简可得:,························6分因为直线与椭圆交于两点∴·····························7分化简得:,解得,由根与系数的关系得:,,··············8分记直线PA,PB的斜率为,······························9分·······································10分··········································11分.所以直线的斜率之和为定值1.································12分22、(1)函数的定义域为,,··············································1分当时,对任意的,,故在上单调递增,无极值;···························2分当时,当时,,单调递增;································3分当时,,单调递减.·······························4分故在处取得极大值,无极小值.综上所述,若存在极值,则的取值范围为.·······················5分(2)当时,.设,其定义域为,则证明即可.·······················································6分,设,则,··············································7分故函数在上单调递增.,.有唯一的实根,且,···························8分.当时,;当时,,··················································9分故函数的最小值为..····················11分.························································12分1.A2.B3.C4.C5.B6.A7.B8.D9.BC10.ABD11.BC12.BD y0123 P0.216 0.4320.2880.064
相关试卷
这是一份广东省湛江市第二十一中学2022-2023学年高二下学期期中考试数学试题,文件包含广东省湛江市第二十一中学2022-2023学年高二下学期期中考试数学答案docx、广东省湛江市第二十一中学2022-2023学年高二下学期期中考试数学试题docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份广东省湛江市第二十一中学2022-2023学年高二上学期期中考试数学试题,文件包含广东省湛江市第二十一中学2022-2023学年高二上学期期中考试数学答案pdf、广东省湛江市第二十一中学2022-2023学年高二上学期期中考试数学试题pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份2020湛江第二十一中学高二下学期复学考试(线上测试)数学试题含答案