2021学年第3章 图形的相似综合与测试一课一练
展开2022-2023年湘教版数学九年级上册
第3章《图形的相似》单元检测卷
一 、选择题(本大题共12小题,每小题3分,共36分)
1.若3a=4b,则=( )
A. B. C. D.
2.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( )
A.5:8 B.3:8 C.3:5 D.2:5
3.下列图形一定是相似图形的是( )
A.任意两个菱形
B.任意两个正三角形
C.两个等腰三角形
D.两个矩形
4.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A.(2,2),(3,2) B.(2,4),(3,1) C.(2,2),(3,1) D.(3,1),(2,2)
5.已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是( )
A. B.
C. D.
6.如图,在△ABC 中,∠C=90°,D 是 AC 上一点,DE⊥AB 于点 E,若 AC=8,BC=6,DE=3,则 AD 的长为( )
A.3 B.4 C.5 D.6
7.如图,四边形ABCD为平行四边形,E,F为CD边的两个三等分点,连接AE,BE交于点G,则S△EFG∶S△ABG=( )
A.1∶3 B.3∶1 C.1∶9 D.9∶1
8.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O, 准星A,目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到A’,若OA=0.2米,OB=40米,AA’=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为( )
A.3米 B.0.3米 C.0.03米 D.0.2米
9.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有杆不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈 B.四丈五尺 C.一丈 D.五尺
10.已知△ABC如图所示.则与△ABC相似的是图中的( )
A. B. C. D.
11.如图,平行四边形ABFC的对角线AF、BC相交于点E,点O为AC的中点,连接BO并延长,交FC的延长线于点 D,交AF于点G,连AD、OE,若平行四边形ABFC的面积为48,则S△AOG 的面积为( )
A.5.5 B.5 C.4 D.3
12.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,∠ACB=36°,AB=BC,AC=2,则AB的长度是( )
A.﹣1 B.1 C. D.
二 、填空题(本大题共6小题,每小题3分,共18分)
13.已知=,则=________.
14.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是 .
15.在某一时刻,测得一根高为2 m的竹竿的影长为1 m,同时测得一栋建筑物的影长为12 m,那么这栋建筑物的高度为________m.
16.过△ABC(AB>AC)的边AC边上一定点M作直线与AB相交,使得到的新三角形与△ABC相似,这样的直线共有 条.
17.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是 .(结果保留根号)
18.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为 .
三 、作图题(本大题共1小题,共10分)
19.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)求出△ABC与△A′B′C′的位似比;
(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.
四 、解答题(本大题共5小题,共56分)
20.已知△ABC三边a,b,c满足(a﹣c):(a+b):(c﹣b)=﹣2:7:1,且a+b+c=24cm.
(1)求a,b,c的值;
(2)判断△ABC的形状.
21.如图,D,E分别是△ABC的边AC,AB上的点,AD·AC=AE·AB.
求证:△AED∽△ACB.
22.如图,在△ABC中,AD、BE是中线,它们相交于点F,EG//BC,交AD于点G.
(1)求证:△FGE∽△FDB;
(2)求AG:DF的值.
23.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C,A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1 m,DE=1.5 m,BD=8.5 m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
24.已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.
(1)求证:CD=CF;
(2)连结DF,交AC于点G,求证:△DGC∽△ADC;
(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.
参考答案
1.B
2.A
3.B.
4.C
5.C
6.C
7.C
8.B.
9.B
10.C
11.C
12.A.
13.答案为:-.
14.答案为:(4,2)或(﹣4,﹣2).
15.答案为:24
16.答案为:2.
17.答案为:
18.答案为:.
19.解:(1)如图.
(2)△ABC与△A′B′C′的位似比为1:2.
(3)如图
20.解:
21.解:
22.解:
23.解:∵CB⊥AD,ED⊥AD,∴BC∥DE,
∴△ABC∽△ADE,
∴=,即=,
解得AB=17(m).
经检验,AB=17是原分式方程的解.
答:河宽AB的长为17 m.
24. (1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,
在△ADC和△ABC中,
∴△ADC≌△ABC,
∴CD=CB,
∵CE⊥AB,EF=EB,
∴CF=CB,
∴CD=CF;
(2)解:∵△ADC≌△ABC,∴∠ADC=∠B,
∵CF=CB,∴∠CFB=∠B,∴∠ADC=∠CFB,∴∠ADC+∠AFC=180°,
∵四边形AFCD的内角和等于360°,∴∠DCF+∠DAF=180°,
∵CD=CF,∴∠CDG=∠CFD,
∵∠DCF+∠CDF+∠CFD=180°,∴∠DAF=∠CDF+∠CFD=2∠CDG,
∵∠DAB=2∠DAC,∴∠CDG=∠DAC,
∵∠DCG=∠ACD,
∴△DGC∽△ADC;
(3)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,=,
∵∠ADC=2∠HAG,AD=3,DC=2,
∴∠HAG=∠DGC,=,∴∠HAG=∠AHG,=,∴HG=AG,
∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,
∴△DGC∽△AGF,
∴==,
∴=.
华师大版九年级上册第23章 图形的相似综合与测试同步练习题: 这是一份华师大版九年级上册第23章 图形的相似综合与测试同步练习题,共9页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
初中数学湘教版九年级上册第3章 图形的相似综合与测试同步练习题: 这是一份初中数学湘教版九年级上册第3章 图形的相似综合与测试同步练习题,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湘教版九年级上册第3章 图形的相似综合与测试同步训练题: 这是一份湘教版九年级上册第3章 图形的相似综合与测试同步训练题,共10页。试卷主要包含了如果=,那么的值是,下列各组中的四条线段成比例的是,已知图等内容,欢迎下载使用。