终身会员
搜索
    上传资料 赚现金
    【最新版】新教材苏教版高中数学选择性必修一§4.1 第2课时 数列的递推公式【讲义+习题】
    立即下载
    加入资料篮
    【最新版】新教材苏教版高中数学选择性必修一§4.1 第2课时 数列的递推公式【讲义+习题】01
    【最新版】新教材苏教版高中数学选择性必修一§4.1 第2课时 数列的递推公式【讲义+习题】02
    【最新版】新教材苏教版高中数学选择性必修一§4.1 第2课时 数列的递推公式【讲义+习题】03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【最新版】新教材苏教版高中数学选择性必修一§4.1 第2课时 数列的递推公式【讲义+习题】

    展开
    第2课时 数列的递推公式
    学习目标 1.理解递推公式的含义,能根据递推公式求数列的前几项.2.进一步理解数列与函数的关系.
    导语
    同学们,上节课我们学习了数列的概念以及数列的通项公式,我们知道了数列与现代生活密不可分,其实,当人类祖先需要用一组数据有序地表达一类事物、记录某个变化过程时,数列就应运而生了,因此,数列应用广泛,大家先看本课时的问题1.
    一、数列的递推公式
    某剧场有30排座位,第一排有20个座位,从第二排起,后一排都比前一排多2个座位.
    问题1 写出前五排座位数.
    提示 20,22,24,26,28.
    问题2 第n排与第n+1排座位数有何关系?
    提示 第n+1排比第n排多2个座位.
    问题3 第n排座位数an与第n+1排座位数an+1能用等式表示吗?
    提示 能.an+1=an+2.
    知识梳理
    一般地,如果已知一个数列的第1项(或前几项),且任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫作这个数列的递推公式.
    注意点:(1)通项公式反映的是an与n之间的关系;(2)递推关系是数列任意两个或多个相邻项之间的推导关系,需要知道首项,即可求数列中的每一项.
    例1 若数列{an}满足a1=2,an+1=,n∈N*,求a2 022.
    解 a2===-3,
    a3===-,
    a4===,
    a5===2=a1,

    ∴{an}是周期为4的数列,
    ∴a2 022=a4×505+2=a2=-3.
    反思感悟 递推公式反映的是相邻两项(或n项)之间的关系.对于通项公式,已知n的值即可得到相应的项,而递推公式则要已知首项(或前几项),才可依次求得其他的项.若项数很大,则应考虑数列是否具有规律性.
    跟踪训练1 已知数列{an}的首项a1=1,且满足an+1=an+,则此数列的第3项是(  )
    A.1 B. C. D.
    答案 C
    解析 a1=1,a2=a1+=1,a3=a2+=.
    二、由递推公式求通项公式
    例2 (1)在数列{an}中,a1=1,an+1=an+-,则an等于(  )
    A. B. C. D.
    答案 B
    解析 方法一 (归纳法) 数列的前5项分别为
    a1=1,a2=1+1-=2-=,
    a3=+-=2-=,
    a4=+-=2-=,
    a5=+-=2-=,
    又a1=1,
    由此可得数列的一个通项公式为
    an=.
    方法二 (迭代法) a2=a1+1-,
    a3=a2+-,…,
    an=an-1+-(n≥2),
    则an=a1+1-+-+-+…+-
    =2-=(n≥2).
    又a1=1也适合上式,所以an=(n∈N*).
    方法三 (累加法) an+1-an=-,
    a1=1,
    a2-a1=1-,
    a3-a2=-,
    a4-a3=-,

    an-an-1=-(n≥2),
    以上各项相加得
    an=1+1-+-+…+-.
    所以an=(n≥2).
    因为a1=1也适合上式,所以an=(n∈N*).
    (2)已知数列满足a1=1,an+1=an,则an等于(  )
    A.n+1 B.n
    C. D.
    答案 D
    解析 由题意,因为数列满足an+1=an,所以=,
    所以an=··…···a1=××…×××1=.
    反思感悟 由递推公式求通项公式的常用方法
    (1)归纳法:根据数列的某项和递推公式,求出数列的前几项,归纳出通项公式.
    (2)迭代法、累加法或累乘法,递推公式对应的有以下几类:
    ①an+1-an=常数,或an+1-an=f(n)(f(n)是可以求和的),使用累加法或迭代法;
    ②an+1=pan(p为非零常数),或an+1=f(n)an(f(n)是可以求积的),使用累乘法或迭代法.

    跟踪训练2 (1)已知数列{an}满足a1=1,an=an-1+-(n≥2),求an.
    解 因为an=an-1+-(n≥2),
    所以an-an-1=-.
    所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
    =(-)+(-)+…+(-)+1
    =-+1.
    又a1=1也符合上式,
    所以an=-+1,n∈N*.
    (2)已知数列{an}满足a1=1,ln an-ln an-1=1(n≥2),求an.
    解 因为ln an-ln an-1=1,
    所以ln=1,
    即=e(n≥2).
    所以an=··…··a1

    =en-1(n≥2),
    又a1=1也符合上式,
    所以an=en-1,n∈N*.
    三、数列的函数特征
    问题4 在数列的通项公式中,给定任意的序号n,就会有唯一确定的an与其对应,这种情形与以往学的哪方面的知识有联系?
    提示 函数.
    知识梳理
    通项公式就是数列的函数解析式,以前我们学过的函数的自变量通常是连续变化的,而数列是自变量为离散的数的函数.
    注意点:(1)数列的通项公式实际上是一个以正整数集N*(或它的有限子集)为定义域的函数解析式.(2)数列还可以用列表法、图象法表示.
    例3 已知数列{an}的通项公式是an=(n+1)·n,n∈N*.试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.
    解 方法一 an+1-an=(n+2)n+1-(n+1)n=,
    当n<9时,an+1-an>0,即an+1>an;
    当n=9时,an+1-an=0,即an+1=an;
    当n>9时,an+1-an<0,即an+1 则a1a11>a12>…,
    故数列{an}有最大项,为第9项和第10项,且a9=a10=10×9.
    方法二 根据题意,令

    解得9≤n≤10.
    又n∈N*,则n=9或n=10.故数列{an}有最大项,为第9项和第10项,且a9=a10=10×
    9.
    反思感悟 求数列最值的方法
    (1)函数的单调性法:令an=f(n),通过研究f(n)的单调性来研究最大(小)项.
    (2)不等式组法:先假设有最大(小)项.不妨设an最大,则满足(n≥2),解不等式组便可得到n的取值范围,从而确定n的值;求最小项用不等式组(n≥2)求得n的取值范围,从而确定n的值.
    跟踪训练3 已知数列an=n2-6n+5,则该数列中最小项的序号是(  )
    A.3 B.4 C.5 D.6
    答案 A
    解析 因为an=-4=2-4,
    所以当n=3时,an取得最小值.

    1.知识清单:
    (1)数列的递推公式.
    (2)由递推公式求数列的通项公式.
    (3)数列的函数特征.
    2.方法归纳:归纳法、迭代法、累加法、累乘法.
    3.常见误区:累加法、累乘法中不注意检验首项是否符合通项公式.

    1.已知在数列{an}中,a1=2,an+1=an+n(n∈N*),则a4的值为(  )
    A.5 B.6 C.7 D.8
    答案 D
    解析 因为a1=2,an+1=an+n,所以a2=a1+1=2+1=3,a3=a2+2=3+2=5,a4=a3+3=5+3=8.
    2.在数列中,an=,则(  )
    A.是常数列 B.不是单调数列
    C.是递增数列 D.是递减数列
    答案 D
    解析 在数列中,an==1+,
    由反比例函数的性质得是递减数列.
    3.已知数列{an}中,a1=1,a2=2,且an·an+2=an+1(n∈N*),则a2 022的值为(  )
    A.2 B.1 C. D.
    答案 C
    解析 an·an+2=an+1(n∈N*),
    由a1=1,a2=2,得a3=2,
    由a2=2,a3=2,得a4=1,
    由a3=2,a4=1,得a5=,
    由a4=1,a5=,得a6=,
    由a5=,a6=,得a7=1,
    由a6=,a7=1,得a8=2,
    由此推理可得数列{an}是一个周期为6的周期数列,所以a2 022=a337=a6=.
    4.323是数列{n(n+2)}的第________项.
    答案 17
    解析 由an=n2+2n=323,
    解得n=17(负值舍去).
    ∴323是数列{n(n+2)}的第17项.


    1.已知数列{an}满足an=4an-1+3(n≥2,n∈N*),且a1=0,则此数列的第5项是(  )
    A.15 B.255 C.16 D.63
    答案 B
    解析 由递推公式,得a2=3,a3=15,a4=63,a5=255.
    2.数列,-,,-,…的第n项an与第n+1项an+1的关系是(  )
    A.an+1=2an B.an+1=-2an
    C.an+1=an D.an+1=-an
    答案 D
    3.在数列中,a1=,an+1=1-,则a2 022等于(  )
    A. B.-1 C.2 D.3
    答案 C
    解析 当n=1时,a2=1-=-1;
    当n=2时,a3=1-=2;
    当n=3时,a4=1-==a1,a5=1-=-1=a2,a6=2,…;所以数列{an}是一个周期为3的周期数列,故a2 022=a674×3=a3=2.
    4.已知数列{an}满足a1=2,an+1-an+1=0(n∈N*),则此数列的通项公式an等于(  )
    A.n2+1 B.n+1
    C.1-n D.3-n
    答案 D
    解析 ∵an+1-an=-1.
    ∴当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+
    =2+(-1)×(n-1)=3-n.
    当n=1时,a1=2也符合上式.
    故数列的通项公式an=3-n(n∈N*).

    5.下列给出的图形中,星星的个数构成一个数列,则该数列的一个递推公式可以是(  )

    A.an+1=an+n,n∈N*
    B.an=an-1+n,n∈N*,n≥2
    C.an+1=an+,n∈N*,n≥2
    D.an=an-1+,n∈N*,n≥2
    答案 B
    解析 结合图形易知,a1=1,a2=3=a1+2,a3=6=a2+3,a4=10=a3+4,
    ∴an=an-1+n,n∈N*,n≥2.
    6.已知在数列{an}中,an=-2n2+25n+30(n∈N*),则数列中最大项的值是(  )
    A.107 B.108 C.108 D.109
    答案 B
    解析 由已知得an=-2n2+25n+30=-22+108,由于n∈N*,故当n取距离最近的正整数6时,an取得最大值108.∴数列{an}中最大项的值为a6=108.
    7.已知在数列{an}中,a1a2…an=n2(n∈N*),则a9=______.
    答案 
    解析 a1a2…a8=82,①
    a1a2…a9=92,②
    ②÷①得,a9==.
    8.数列的通项公式是an=n2-7n+50,则数列中的最小项是________.
    答案 38
    解析 数列的通项公式an=n2-7n+50=2+,
    因为n∈N*,所以当n=3或n=4时,an最小,此时a3=a4=38,
    则数列中的最小项是38.
    9.在数列中,a1=1,an+1=(n∈N*).
    (1)求a2,a3,a4;
    (2)猜想an(不用证明).
    解 (1)∵a1=1,
    an+1=,
    ∴a2==,
    a3==,
    a4==.
    (2)猜想:an=.
    10.在数列{an}中,a1=2,a17=66,通项公式是关于n的一次函数.
    (1)求数列{an}的通项公式;
    (2)求a2 022.
    解 (1)设an=kn+b(k≠0),
    则有解得
    ∴an=4n-2,n∈N*.
    (2)a2 022=4×2 022-2=8 086.

    11.已知an=,则数列{an}中相等的连续两项是(  )
    A.第9项,第10项
    B.第10项,第11项
    C.第11项,第12项
    D.第12项,第13项
    答案 B
    解析 假设an=an+1,则有=,解得n=10,所以相等的连续两项是第10项和第11项.
    12.已知数列{an}满足a1>0,且an+1=an,则数列{an}的最大项是(  )
    A.a1 B.a9
    C.a10 D.不存在
    答案 A
    解析 因为a1>0,且an+1=an,
    所以an>0,
    所以=<1,
    所以an+1 所以此数列为递减数列,
    故最大项为a1.
    13.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…,满足an+2=an+1+an(n≥1),那么1+a2+a4+a6+…+a2 022等于(  )
    A.a2 021 B.a2 022
    C.a2 023 D.a2 024
    答案 C
    解析 由于an+2=an+1+an(n≥1),
    则1+a2+a4+a6+…+a2 022=a1+a2+a4+a6+…+a2 022=a3+a4+a6+…+a2 022=a5+a6+…+a2 022=a2 021+a2 022=a2 023.
    14.若数列{an}满足a1=2,a2=3,an+an+2=an+1(n∈N*),则a2 022的值为________.
    答案 -1
    解析 a1+a3=a2,则a3=a2-a1=1,a2+a4=a3,则a4=a3-a2=-2,a3+a5=a4,则a5=a4-a3=-3,a6=a5-a4=-1,a7=a6-a5=2,a8=a7-a6=3,…,
    ∴数列{an}为周期数列,且周期T=6,又2 022=6×337,
    ∴a2 022=a6=-1.

    15.在一个数列中,如果对任意n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫作等积数列,k叫作这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.
    答案 28
    解析 依题意得数列{an}是周期为3的数列,
    且a1=1,a2=2,a3=4,
    因此a1+a2+a3+…+a12=4(a1+a2+a3)=4×(1+2+4)=28.
    16.已知数列{an}满足:a1=m(m为正整数),an+1=
    若a4=4,求m所有可能的取值.
    解 若a3为奇数,则3a3+1=4,a3=1.
    若a2为奇数,则3a2+1=1,a2=0(舍去),
    若a2为偶数,则=1,a2=2.
    若a1为奇数,则3a1+1=2,a1=(舍去),
    若a1为偶数,=2,a1=4;
    若a3为偶数,则=4,a3=8.
    若a2为奇数,则3a2+1=8,a2=(舍去),
    若a2为偶数,则=8,a2=16.
    若a1为奇数,则3a1+1=16,a1=5,
    若a1为偶数,则=16,a1=32.
    故m所有可能的取值为4,5,32.
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【最新版】新教材苏教版高中数学选择性必修一§4.1 第2课时 数列的递推公式【讲义+习题】
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map