人教版九上 第25章《概率》培优测试卷A卷(原卷+解析)
展开
这是一份人教版九上 第25章《概率》培优测试卷A卷(原卷+解析),文件包含答案docx、A卷docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
人教版九上 第25章 《概率》单元培优测试卷 A卷
答案解析
一、 单选题(本大题共10小题,每小题3分,共30分)
1.下列事件属于必然事件的是( )
A.打开电视,正在播出系列专题片“航拍中国”
B.若原命题成立,则它的逆命题一定成立
C.一组数据的方差越小,则这组数据的波动越小
D.在数轴上任取一点,则该点表示的数一定是有理数
1.C
【分析】必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
解:A、打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意;
B、若原命题成立,则它的逆命题一定成立,是随机事件,不合题意;
C、一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;
D、在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意;
故选.
2.如图,正方形ABCD内接于⊙O,若随意抛出一粒石子在这个圆面上,则石子落在正方形ABCD内概率是( )
A. B. C. D.
.C
【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.
解:∵设正方形的边长为a,
∴⊙O的半径为,
∴S圆=×(a)2,
S正方形=a2,
∴在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是,
故选:C.
3.某路口的交通信号灯每分钟红灯亮72秒,绿灯亮25秒,黄灯亮3秒,当小明到达该路口时,遇到绿灯的概率是( )
A. B. C. D.
B
【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,依此列式计算即可求解.
解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,
∴当小明到达该路口时,遇到绿灯的概率P=,
故选:B.
4.甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是( )
A.甲,乙获胜的概率均低于0.5 B.甲,乙获胜的概率相同
C.甲,乙获胜的概率均高于0.5 D.游戏公平
C
【分析】根据游戏结局共有三种情形,其中甲、乙获胜的概率都为,即可求解.
解:甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,结局有甲获胜(乙输)、平局、乙获胜(甲输),三种结局,其中,甲、乙获胜的概率都为,则A,B,D,选项正确,C选项错误.
故选C
5.某学习小组进行“用频率估计概率”的试验时,统计了某一结果出现的频率如下表,则符合这一结果的试验可能是( )
试验次数
100
200
500
800
1000
1200
实验频率
0.343
0.326
0.335
0.330
0.331
0.330
A.先后两次抛掷一枚质地均匀的硬币,两次都是反面朝上
B.先后两次掷一枚质地均匀的骰子,两次的点数和不大于6
C.将一个篮球和一个足球随机放入三个不同的篮子中,恰有一个篮子为空
D.从两男两女四人中抽取两人参加朗读比赛,两人性别相同
D
【分析】根据统计图可知,试验结果的频率在0.33附近波动,即其概率约为0.33,计算四个选项的概率,约为0.33者即为正确答案.
解:由表格可知:此实验的频率最后稳定在0.33左右,
如下树状图:
故先后两次抛掷一枚质地均匀的硬币,两次都是反面朝上的概率为,与表格不符,不符合题意;
B.如下表:
1
2
3
4
5
6
1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12
先后两次掷一枚质地均匀的骰子,两次的点数和不大于6的概率为,与表格不符,不符合题意;
C.将一个篮球和一个足球随机放入三个不同的篮子中,恰有一个篮子为空的概率为1,与表格不相符,不符合题意;
D.如下树状图:
故从两男两女四人中抽取两人参加朗读比赛,两人性别相同的概率为,与表格相符,符合题意;
故选:D.
6.甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率
B
【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;
B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;
C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;
D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.
故选:B.
7.如图所示,阴影是两个相同菱形的重合部分,一个小球随机的在图案上滚动,最后停留在阴影部分的概率是( )
A. B. C. D.
B
【分析】根据菱形和等腰三角形性质,得;根据菱形和余角性质,得,从而得;结合三角形面积计算公式分析,分别得阴影部分面积和部分重叠的两个菱形面积,结合概率的性质计算,即可得到答案.
解:如图,
∵两个菱形相同
∴
∴
又∵两个菱形
∴,
∴
∴
∴
∴阴影部分面积,
∴部分重叠的两个菱形面积-阴影部分面积
∴最后停留在阴影部分的概率
故选:B.
8.将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式成立的事件发生的概率为( )
A. B. C. D.
D
【分析】本题是一个等可能事件的概率,试验发生包含的事件是两次分别从袋中摸球,共有9×9种结果,满足条件的事件是使不等式a-2b+10>0成立的,即2b-a<10,列举出当当b=1,2,3,4,5,6,7,8,9时的所有的结果,得到概率.
解:由题意知本题是一个等可能事件的概率,
试验发生包含的事件是两次分别从袋中摸球,共有9×9=81种结果,
满足条件的事件是使不等式a-2b+10>0成立的,即2b-a<10
当b=1,2,3,4,5时,a有9种结果,共有45种结果,
当b=6时,a有7种结果
当b=7时,a有5种结果
当b=8时,a有3种结果
当b=9时,a有1种结果
∴共有45+7+5+3+1=61种结果,
∴所求的概率是,
故选D.
9.数学社团的同学做了估算π的实验.方法如下:
第一步:请全校同学随意写出两个实数x、y(x、y可以相等),且它们满足:0<x<1,0<y<1;
第二步:统计收集上来的有效数据,设“以x,y,1为三条边长能构成锐角三角形”为事件A;
第三步:计算事件A发生的概率,及收集的本校有效数据中事件A出现的频率;
第四步:估算出π的值.
为了计算事件A的概率,同学们通过查阅资料得到以下两条信息:
①如果一次试验中,结果落在区域D中每一个点都是等可能的,用A表示“试验结果落在区域D中一个小区域M中”这个事件,那么事件A发生的概率为P(A)=;
②若x,y,1三个数据能构成锐角三角形,则需满足x2+y2>1.
根据上述材料,社团的同学们画出图,若共搜集上来的m份数据中能和“1”成锐角三角形的数据有n份,则可以估计π的值为( )
A. B.
C. D.
D
【分析】根据x,y,1三个数据能构成锐角三角形,则需满足x2+y2>1的条件,可以判断符合条件的区域为图中(3)的区域,再根据①几何概率的计算方法即可得到满足题意的概率,最后通过搜集上来的m份数据中能和“1”成锐角三角形的数据有n份的条件,得到用m,n表示上述方法计算的概率,从而解出π的值,得出答案.
解:根据第一步,0<x<1,0<y<1,
可以用图中正方形区域表示,
∴,
再根据若x,y,1三个数据能构成锐角三角形,
则需满足x2+y2>1,
可以用图中(3)区域表示,
∴面积为正方形面积减去四分之一圆的面积,
∴,
设“以x,y,1为三条边长能构成锐角三角形”为事件A,
∴根据①概率计算方法可以得到:
,
又∵共搜集上来的m份数据中能和“1”成锐角三角形的数据有n份,
∴,
解得,
故选:D.
10.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是( )
A.1 B. C. D.
D
【分析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案.
解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,
故P(所作三角形是等腰三角形)=.
故选D.
二.填空题(本大题共8小题,每小题4分,共32分)
11.写一个你喜欢的实数m的值,使得事件“对于二次函数,当时,y随x的增大而增大”成为随机事件,这个实数m的值______________.
m>1的实数
【分析】根据事件发生的可能性大小判断相应事件的类型即可
解:实数m的值m>1,使得事件对于二次函数
,当x>2时,y随x的增大,则5m-3>2,解的:m>1.
而增大”成为随机事件
故答案为: m>1
12.从﹣1,2,3这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),若点N为(﹣4,0),则在平面直角坐标系内直线MN经过第一象限的概率为___.21世纪教育网
【分析】先求出点的所有可能的坐标,再找出当直线经过第一象限时,点的所有符合条件的坐标,然后利用概率公式计算即可得.
解:由题意得:点的坐标共有6种:,,,,,,
由一次函数的图象可知,当点的坐标为,,,时,直线经过第一象限,
则在平面直角坐标系内,直线经过第一象限的概率为,
故答案为:.
版权所有
11. 一个木盒里装有四个完全相同的小球,在小球上分别标上,,2,3四个数字,搅匀后,小明先从木盒里随机摸出一个小球,然后小亮从剩余的小球里随机摸出一个小球,则两人摸出的小球上的数字之积为无理数的概率为 _____.
【分析】画树状图,共有12种等可能的结果,其中两人摸出的小球上的数字之积为无理数的结果有8种,再由概率公式求解即可.
解:画树状图如下:
共有12种等可能的结果,其中两人摸出的小球上的数字之积为无理数的结果有8种,
∴两人摸出的小球上的数字之积为无理数的概率为,
故答案为:.
12. 小明做试验:在平整的桌面上摆放一张的正方形白纸,并画出正方形的内切圆,随机将一把大米撒到白纸上(若大米落在白纸外,则重新试验),统计落在圆内的米粒数a、落在正方纸上的米粒数b.当这样的试验次数很大时,大米落在圆内的频率会在常数________(结果保留)附近摆动.
.
【分析】当这样的试验次数很大时,大米落在圆内的频率会在附近摆动.
解:如图,正方形ABCD的内切圆圆心为O,点E和点F为两个切点,
∵正方形ABCD的内切圆圆心为O,
∴ OE⊥BC,OF⊥AD
∵ADBC
∴OF⊥BC
∴点E、O、F在同一条直线上
∵∠A=∠B=∠BEF=90°,
∴四边形ABEF是矩形
∴EF=AB=30cm
∴OE=OF=15cm
∴(cm2)
∴
由题意可知当这样的试验次数很大时,大米落在圆内的频率会在附近摆动.
故答案为:.
15.如图,正方形中,对角线和相交于点O,点E在线段上,交于点F,小明向正方形内投拥一枚飞镖,则飞镖落在阴影部分的概率是_________.
【分析】由正方形的性质求得△OCE≌△ODF,从而得出阴影面积=△ODC面积=正方形面积,再由几何概率计算求值即可;
解:ABCD是正方形,则OD=OC,∠ODF=∠OCE=45°,∠COD=90°,
∠EOF=∠COD,则∠EOF-∠FOC=∠COD-∠FOC,
∴∠EOC=∠FOD,
∴△OCE≌△ODF(ASA),
∴△OCE面积等于△ODF面积,
∴阴影面积=△ODC面积=正方形面积,
∴飞镖落在阴影部分的概率是,
故答案为:;
16. 一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋中约有红球_____________个.
3
【分析】先根据摸到红球的频率稳定于,可估计摸到红球的概率约为,再设袋中红球个数为,根据概率公式列出关于的方程,解之得出答案.
解:∵通过大量重复摸球试验后,发现摸到红球的频率稳定于
∴可估计摸到红球的概率约为
设袋中红球个数为,
依据概率公式得:
解得
所以可估计袋中约有3个红球
故答案为:3.
17. 在中,,,是边上的中线,记且为正整数.则使关于的分式方程有正整数解的概率为______
【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,得到AC=BE=4,在△ABE中,根据三边关系可知AB-BE