四川省眉山市东坡中学2022年中考数学全真模拟试题含解析
展开
这是一份四川省眉山市东坡中学2022年中考数学全真模拟试题含解析,共19页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列图形中,既是轴对称图形又是中心对称图形的是( )
A.等边三角形 B.菱形 C.平行四边形 D.正五边形
2.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )
A.π B. C.2π D.3π
3.如图是一个几何体的三视图,则这个几何体是( )
A. B. C. D.
4.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是
A. B. C. D.3
5.下列命题是真命题的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.两条对角线相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.平行四边形既是中心对称图形,又是轴对称图形
6.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=( )
A.52° B.38° C.42° D.60°
7.把不等式组的解集表示在数轴上,正确的是( )
A. B.
C. D.
8.已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为( )
A.﹣2 B.﹣1 C.1 D.2
9.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )
A.7海里/时 B.7海里/时 C.7海里/时 D.28海里/时
10.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第( )象限.
A.一 B.二 C.三 D.四
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_____________.
12.已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+= .
13.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.
14.抛物线 的顶点坐标是________.
15.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.
16.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
(Ⅰ)求二次函数的解析式及点A,B的坐标;
(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.
18.(8分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).
(1)求抛物线的解析式;
(2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.
19.(8分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)△ABC的面积等于_____;
(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.
20.(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:
(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;
(2)求出图中a的值;
(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.
21.(8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
22.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)
23.(12分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)
24.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.
【详解】
解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;
B、菱形是轴对称图形,也是中心对称图形,故此选项正确;
C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
D、正五边形是轴对称图形,不是中心对称图形,故此选项错误.
故选:B.
【点睛】
本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.
2、D
【解析】
根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.
【详解】
∵△ABC 为等边三角形,
∴∠A=60°,
∴∠BOC=2∠A=120°,
∴图中阴影部分的面积= =3π.
故选D.
【点睛】
本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.
3、B
【解析】
试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
考点:由三视图判断几何体.
4、B
【解析】
如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.
【详解】
解:如图,AB的中点即数轴的原点O.
根据数轴可以得到点A表示的数是.
故选:B.
【点睛】
此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.
5、C
【解析】
根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.
【详解】
A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;
B、两条对角线互相平分的四边形是平行四边形.故本选项错误;
C、两组对边分别相等的四边形是平行四边形.故本选项正确;
D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;
故选:C.
【点睛】
考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
6、A
【解析】
试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.
考点:平行线的性质.
7、A
【解析】
分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
【详解】
由①,得x≥2,
由②,得x<1,
所以不等式组的解集是:2≤x<1.
不等式组的解集在数轴上表示为:
.
故选A.
【点睛】
本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
8、C
【解析】
根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.
【详解】
∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),
∴设旋转后的函数解析式为y=﹣x﹣1,
在一次函数y=﹣x+2中,令y=1,则有﹣x+2=1,解得:x=4,
即一次函数y=﹣x+2与x轴交点为(4,1).
一次函数y=﹣x﹣1中,令y=1,则有﹣x﹣1=1,解得:x=﹣2,
即一次函数y=﹣x﹣1与x轴交点为(﹣2,1).
∴m==1,
故选:C.
【点睛】
本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.
9、A
【解析】
试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.
由题意海里,海里,
在中,
所以
在中,
所以
所以
解得:
故选A.
10、B
【解析】
根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
【详解】
∵反比例函数y=的图象在一、三象限,
∴k>0,
∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
故选:B.
【点睛】
考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、9.26×1011
【解析】试题解析: 9260亿=9.26×1011
故答案为: 9.26×1011
点睛: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
12、1
【解析】
试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.
故答案为1.
考点:根与系数的关系.
13、
【解析】
设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF∽△BCA,可得,即=,进而得到BE=.
【详解】
解:如图,
由折叠可得,∠AFE=∠A'FE,
∵A'F∥AB,
∴∠AEF=∠A'FE,
∴∠AEF=∠AFE,
∴AE=AF,
由折叠可得,AF=A'F,
设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,
∵A'F∥AB,
∴△A'CF∽△BCA,
∴,即=,
解得x=,
∴BE=,
故答案为:.
【点睛】
本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.
14、(0,-1)
【解析】
∵a=2,b=0,c=-1,∴-=0, ,
∴抛物线的顶点坐标是(0,-1),
故答案为(0,-1).
15、1
【解析】
由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.
【详解】
解:∵把△ABC绕点C顺时针旋转得到△A'B'C',
∴∠A=∠A'=50°,∠BCB'=∠ACA'
∵A'B'⊥AC
∴∠A'+∠ACA'=90°
∴∠ACA'=1°
∴∠BCB'=1°
故答案为:1.
【点睛】
本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.
16、
【解析】
【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.
【详解】如图,连接OE、AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∵四边形ABCD是平行四边形,
∴AB=CD=4,∠B=∠D=30°,
∴AE=AB=2,BE==2,
∵OA=OB=OE,
∴∠B=∠OEB=30°,
∴∠BOE=120°,
∴S阴影=S扇形OBE﹣S△BOE
=
=,
故答案为.
【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和△ABE的面积是解本题的关键.
三、解答题(共8题,共72分)
17、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
【解析】
(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
【详解】
(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
令y=0,得到:x2﹣4x﹣5=0,
解得x=﹣1或5,
∴A(﹣1,0),B(5,0).
(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
把点Q′坐标代入y=﹣x2+4x+5,
得到:m2﹣4m﹣5=﹣m2﹣4m+5,
∴m=或(舍弃),
∴Q(,).
(Ⅲ)如图,作MK⊥对称轴x=2于K.
①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
∵此时点M的横坐标为1,
∴y=8,
∴M(1,8),N(2,13),
②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
此时M′的横坐标为3,可得M′(3,8),N′(2,3).
【点睛】
本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
18、(1)y=﹣x2+2x+1;(2)当△MAC是直角三角形时,点M的坐标为(1,)或(1,﹣).
【解析】
(1)由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;
(2)设点M的坐标为(1,m),则CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°两种情况,利用勾股定理可得出关于m的方程,解之可得出m的值,进而即可得出点M的坐标.
【详解】
(1)将A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,
得:,
解得:,
∴抛物线的解析式为y=﹣x2+2x+1.
(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,
设点M的坐标为(1,m),
则CM=,AC==,AM=.
分两种情况考虑:
①当∠ACM=90°时,有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,
解得:m=,
∴点M的坐标为(1,);
②当∠CAM=90°时,有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,
解得:m=﹣,
∴点M的坐标为(1,﹣).
综上所述:当△MAC是直角三角形时,点M的坐标为(1,)或(1,﹣).
【点睛】
本题考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数解析式、二次函数图象的点的坐标特征以及勾股定理等知识点.
19、6 作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G
【解析】
(1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.
【详解】
解:(1)4×3÷2=6,故△ABC的面积等于6.
(2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG即为所求正方形.
故答案为:6,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G.
【点睛】
本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.
20、(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)40;(3)要在7:50~8:10时间段内接水.
【解析】
(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,即可求得k1、b的值,从而得一次函数的解析式;当8<x≤a时,设y=,将(8,100)的坐标代入y=,求得k2的值,即可得反比例函数的解析式;(2)把y=20代入反比例函数的解析式,即可求得a值;(3)把y=40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40 ℃的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围.
【详解】
解: (1)当0≤x≤8时,设y=k1x+b,
将(0,20),(8,100)的坐标分别代入y=k1x+b,可求得k1=10,b=20
∴当0≤x≤8时,y=10x+20.
当8<x≤a时,设y=,
将(8,100)的坐标代入y=,
得k2=800
∴当8
相关试卷
这是一份四川省眉山市东坡区东坡区东坡中学2022年中考数学四模试卷含解析,共22页。试卷主要包含了若,,则的值是,若分式的值为0,则x的值为等内容,欢迎下载使用。
这是一份四川省眉山市东坡区东坡区东坡中学2022年中考数学模拟试题含解析,共25页。试卷主要包含了下列运算正确的是,二次函数y=﹣等内容,欢迎下载使用。
这是一份2022届四川省眉山市东坡区苏辙中学中考数学模拟试题含解析,共20页。试卷主要包含了sin45°的值等于,函数的图像位于等内容,欢迎下载使用。