四川省营山县联考2022年中考数学猜题卷含解析
展开这是一份四川省营山县联考2022年中考数学猜题卷含解析,共21页。试卷主要包含了已知抛物线y=,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是
2.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )
A.小明不是胜就是输,所以小明胜的概率为 B.小明胜的概率是,所以输的概率是
C.两人出相同手势的概率为 D.小明胜的概率和小亮胜的概率一样
3.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的( )
A.平均数 B.中位数 C.众数 D.方差
4.如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为( )
A.2 B. C. D.
5.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为( )
A.4.5m B.4.8m C.5.5m D.6 m
6.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )
A.1,2 B.1,3
C.4,2 D.4,3
7.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是( )
A. B. C. D.
8.下列调查中,最适合采用全面调查(普查)的是( )
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的调查
9.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是( )
A.(4,﹣3) B.(﹣4,3) C.(5,﹣3) D.(﹣3,4)
10.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
A.2 B.3 C.5 D.7
二、填空题(本大题共6个小题,每小题3分,共18分)
11.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________
12.如图,已知 OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.
13.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____
14.若关于的不等式组无解, 则的取值范围是 ________.
15.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.
16.一元二次方程x﹣1=x2﹣1的根是_____.
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
18.(8分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.
(1)若∠DAB=50°,求∠ATC的度数;
(2)若⊙O半径为2,TC=,求AD的长.
19.(8分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.
20.(8分)某汽车专卖店销售A,B两种型号的汽车.上周销售额为96万元:本周销售额为62万元,销售情况如下表:
A型汽车
B型汽车
上周
1
3
本周
2
1
(1)求每辆A型车和B型车的售价各为多少元
(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?
21.(8分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
甲
乙
价格(万元/台)
7
5
每台日产量(个)
100
60
(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?
22.(10分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;
(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.
23.(12分)(1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化简,再求值•(a2﹣b2),其中a=,b=﹣2.
24.吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是 .列表:
x
…
﹣2
﹣1
0
1
2
3
4
5
6
…
y
…
m
﹣1
﹣5
n
﹣1
…
表中m= ,n= .描点、连线
在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
观察所画出的函数图象,写出该函数的两条性质:
① ;
② .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,
故选C
考点:1、方差;2、平均数;3、中位数;4、众数
2、D
【解析】
利用概率公式,一一判断即可解决问题.
【详解】
A、错误.小明还有可能是平;
B、错误、小明胜的概率是 ,所以输的概率是也是;
C、错误.两人出相同手势的概率为;
D、正确.小明胜的概率和小亮胜的概率一样,概率都是;
故选D.
【点睛】
本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.
3、B
【解析】
根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
【详解】
因为需要保证不少于50%的骑行是免费的,
所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
故选B.
【点睛】
本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
4、B
【解析】
作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.
【详解】
过P作x轴的垂线,交x轴于点A,
∵P(2,4),
∴OA=2,AP=4,.
∴
∴.
故选B.
【点睛】
本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.
5、D
【解析】
根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
【详解】
解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
∵△ABC∽△EDC,
∴,
即,
解得:AB=6,
故选:D.
【点睛】
本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
6、A
【解析】
试题分析:通过猜想得出数据,再代入看看是否符合即可.
解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,
30+4×3=42,
故选A.
点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.
7、C
【解析】
代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.
【详解】
解:当y=0时,有(x-)(x-)=0,
解得:x1=,x2=,
∴MaNa=-,
∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.
故选C.
【点睛】
本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.
8、D
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.
【详解】
A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、A
【解析】
直接利用平移的性质结合轴对称变换得出对应点位置.
【详解】
如图所示:
顶点A2的坐标是(4,-3).
故选A.
【点睛】
此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.
10、C
【解析】
试题解析:∵这组数据的众数为7,
∴x=7,
则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
中位数为:1.
故选C.
考点:众数;中位数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、75°
【解析】
先根据同旁内角互补,两直线平行得出AC∥DF,再根据两直线平行内错角相等得出∠2=∠A=45°,然后根据三角形内角与外角的关系可得∠1的度数.
【详解】
∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.
故答案为:75°.
【点睛】
本题考查了平行线的判定与性质,三角形外角的性质,求出∠2=∠A=45°是解题的关键.
12、
【解析】
由 OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半, 即可求得DM的长.
【详解】
∵OP 平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴
∴
∴
∵PD⊥OA,点M是OP的中点,
∴
故答案为:
【点睛】
此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出 OP 的长是解题关键.
13、
【解析】
设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论.
【详解】
设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).
∵2018=4×504+2,∴K2018为(1009,0).
故答案为:(),(1009,0).
【点睛】
本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.
14、
【解析】
首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.
【详解】
,
解①得:x>a+3,
解②得:x<1.
根据题意得:a+3≥1,
解得:a≥-2.
故答案是:a≥-2.
【点睛】
本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..
15、32°
【解析】
根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.
【详解】
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ABD=58°,
∴∠A=32°,
∴∠BCD=32°,
故答案为32°.
16、x=0或x=1.
【解析】
利用因式分解法求解可得.
【详解】
∵(x﹣1)﹣(x+1)(x﹣1)=0,
∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,
则x=0或x=1,
故答案为:x=0或x=1.
【点睛】
本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
三、解答题(共8题,共72分)
17、(1).(2)①判断:.理由见解析;②或.
【解析】
(1)利用代点法可以求出参数 ;
(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;
②根据①中的情况,可知或再结合图像可以确定的取值范围;
【详解】
解:(1)∵函数的图象经过点,
∴将点代入,即 ,得:
∵直线与轴交于点,
∴将点代入,即 ,得:
(2)①判断: .理由如下:
当时,点P的坐标为,如图所示:
∴点C的坐标为 ,点D的坐标为
∴ , .
∴.
②由①可知当时
所以由图像可知,当直线往下平移的时也符合题意,即 ,
得;
当时,点P的坐标为
∴点C的坐标为 ,点D的坐标为
∴ ,
∴
当 时,即,也符合题意,
所以 的取值范围为:或 .
【点睛】
本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.
18、(2)65°;(2)2.
【解析】
试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT为⊙O的切线;
(2)证明四边形OTCE为矩形,求得OE的长,在直角△OAE中,利用勾股定理即可求解.
试题解析:(2)连接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT为⊙O的切线;
(2)过O作OE⊥AD于E,则E为AD中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE为矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.
考点:2.切线的判定与性质;2.勾股定理;3.圆周角定理.
19、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去B景点的人数所占的百分比即可.
【详解】
(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40-8-14-4-6=8(人),
补全条形统计图为:
扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=280,
所以估计“醉美旅游景点B“的学生人数为280人.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
20、 (1) A型车售价为18万元,B型车售价为26万元. (2) 方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少.
【解析】
(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.
【详解】
解:(1)设A型车售价为x元,B型车售价为y元,则:
解得:
答:A型车售价为18万元,B型车售价为26万元.
(2)设A型车购买m辆,则B型车购买(6-m)辆,
∴ 130≤18m+26(6-m) ≤140,∴:2≤m≤
方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;
∴方案二花费少
【点睛】
此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.
21、(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,
【解析】
(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.
(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.
【详解】
解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台
依题意,得7x+5(6-x)≤34
解这个不等式,得x≤2,即x可取0,1,2三个值.
∴该公司按要求可以有以下三种购买方案:
方案一:不购买甲种机器,购买乙种机器6台.
方案二:购买甲种机器l1台,购买乙种机器5台.
方案三:购买甲种机器2台,购买乙种机器4台
(2)根据题意,100x+60(6-x)≥380
解之得x>
由(1)得x≤2,即≤x≤2.
∴x可取1,2俩值.
即有以下两种购买方案:
购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;
购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.
∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.
【点睛】
解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案.
22、(1)y1=﹣t(t﹣30)(0≤t≤30);(2)∴y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.
【解析】
(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;
(2)利用待定系数法分别求出两个函数解析式,从而得出答案;
(3)分0≤t<20、t=20和20≤t≤30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.
【详解】
解:(1)由图表数据观察可知y1与t之间是二次函数关系,
设y1=a(t﹣0)(t﹣30)
再代入t=5,y1=25可得a=﹣
∴y1=﹣t(t﹣30)(0≤t≤30)
(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:
0≤t<20时,y2=2t,当20≤t≤30时,y2=﹣4t+120,
∴y2=,
(3)当0≤t<20时,y=y1+y2=﹣t(t﹣30)+2t=80﹣(t﹣20)2 ,
可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,
当20≤t≤30时,y=y1+y2=﹣t(t﹣30)﹣4t+120=125﹣(t﹣5)2 ,
可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的增大而减小,所以最大值为当t=20时的值80,
故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.
23、 (1)-2 (2)-
【解析】
试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;
(2)先把和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.
解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1
=2﹣2×+1﹣3
=2﹣+1﹣3
=﹣2;
(2)•(a2﹣b2)
=•(a+b)(a﹣b)
=a+b,
当a=,b=﹣2时,原式=+(﹣2)=﹣.
24、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x=2对称
【解析】
(1)分式的分母不等于零;
(2)把自变量的值代入即可求解;
(3)根据题意描点、连线即可;
(4)观察图象即可得出该函数的其他性质.
【详解】
(1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.
故答案为:一切实数;
(2)m=,n=,
故答案为:-,-;
(3)建立适当的直角坐标系,描点画出图形,如下图所示:
(4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.
故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称
【点睛】
本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.
相关试卷
这是一份2022年四川省长宁县中考数学猜题卷含解析,共17页。试卷主要包含了下列因式分解正确的是,cs30°的相反数是,单项式2a3b的次数是,计算等内容,欢迎下载使用。
这是一份2022年黄冈中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,错误的是,已知一次函数y=等内容,欢迎下载使用。
这是一份2022届四川省泸州泸县联考中考数学猜题卷含解析,共23页。试卷主要包含了答题时请按要求用笔,已知,如图,一段抛物线等内容,欢迎下载使用。