苏州市振华中学2022年中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.的相反数是( )
A. B.- C. D.
2.的值是( )
A.1 B.﹣1 C.3 D.﹣3
3.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是( )
A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
4.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限( )
A.一、二 B.二、三 C.三、四 D.一、四
5.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )
A.15m B.25m C.30m D.20m
6.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )
A. B. C. D.
7.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
A.70° B.65° C.50° D.25°
8.-4的绝对值是( )
A.4 B. C.-4 D.
9.已知,则的值为
A. B. C. D.
10.若代数式有意义,则实数x的取值范围是( )
A.x>0 B.x≥0 C.x≠0 D.任意实数
11.如图,为的直径,为上两点,若,则的大小为( ).
A.60° B.50° C.40° D.20°
12.将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C在x轴的正半轴上,若∠ACB=90°,则点C的坐标为______.
14.将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.
15.如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.
16.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.
17.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.
18.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
20.(6分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?
21.(6分)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边 AC于点 D,延长 BD 至点 E,且BD=2DE,连接 AE.
(1)求线段 CD 的长;(2)求△ADE 的面积.
22.(8分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.
例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).
①若点A(-2,-1),则d(P,A)= ;
②若点B(b,2),且d(P,B)=5,则b= ;
③已知点C(m,n)是直线上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.
23.(8分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.
24.(10分)如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:≈1.41,≈1.73)
25.(10分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)
26.(12分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
(1)求每千克A级别茶叶和B级别茶叶的销售利润;
(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
27.(12分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
(1)求双曲线的解析式;
(2)求点C的坐标,并直接写出y1<y2时x的取值范围.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据只有符号不同的两个数互为相反数进行解答即可.
【详解】
与只有符号不同,
所以的相反数是,
故选C.
【点睛】
本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
2、B
【解析】
直接利用立方根的定义化简得出答案.
【详解】
因为(-1)3=-1,
=﹣1.
故选:B.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.,
3、C
【解析】
根据平行线性质和全等三角形的判定定理逐个分析.
【详解】
由,得∠B=∠D,
因为,
若≌,则还需要补充的条件可以是:
AB=DE,或∠E=∠A, ∠EFD=∠ACB,
故选C
【点睛】
本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.
4、D
【解析】
分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.
详解:∵y=ax﹣x﹣a+1(a为常数),
∴y=(a-1)x-(a-1)
当a-1>0时,即a>1,此时函数的图像过一三四象限;
当a-1<0时,即a<1,此时函数的图像过一二四象限.
故其函数的图像一定过一四象限.
故选D.
点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.
一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.
5、D
【解析】
根据三角形的中位线定理即可得到结果.
【详解】
解:由题意得AB=2DE=20cm,
故选D.
【点睛】
本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
6、B
【解析】
过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
【详解】
过F作FH⊥AD于H,交ED于O,则FH=AB=1.
∵BF=1FC,BC=AD=3,
∴BF=AH=1,FC=HD=1,
∴AF===,
∵OH∥AE,
∴=,
∴OH=AE=,
∴OF=FH﹣OH=1﹣=,
∵AE∥FO,∴△AME∽△FMO,
∴=,∴AM=AF=,
∵AD∥BF,∴△AND∽△FNB,
∴=,
∴AN=AF=,
∴MN=AN﹣AM=﹣=,故选B.
【点睛】
构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
7、C
【解析】
首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
【详解】
解:∵AD∥BC,
∴∠EFB=∠FED=65°,
由折叠的性质知,∠DEF=∠FED′=65°,
∴∠AED′=180°-2∠FED=50°,
故选:C.
【点睛】
此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
8、A
【解析】
根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)
【详解】
根据绝对值的概念可得-4的绝对值为4.
【点睛】
错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.
9、C
【解析】
由题意得,4−x⩾0,x−4⩾0,
解得x=4,则y=3,则=,
故选:C.
10、C
【解析】
根据分式和二次根式有意义的条件进行解答.
【详解】
解:依题意得:x2≥1且x≠1.
解得x≠1.
故选C.
【点睛】
考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.
11、B
【解析】
根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
【详解】
解:连接,
∵为的直径,
∴.
∵,
∴,
∴.
故选:B.
【点睛】
本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.
12、A
【解析】
根据二次函数的平移规律即可得出.
【详解】
解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为
故答案为:A.
【点睛】
本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(2,0)
【解析】
根据直线y=x与双曲线y=交于A,B两点,OA=2,可得AB=2AO=4,再根据Rt△ABC中,OC=AB=2,即可得到点C的坐标
【详解】
如图所示,
∵直线y=x与双曲线y=交于A,B两点,OA=2,
∴AB=2AO=4,
又∵∠ACB=90°,
∴Rt△ABC中,OC=AB=2,
又∵点C在x轴的正半轴上,
∴C(2,0),
故答案为(2,0).
【点睛】
本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长.
14、y=3x-1
【解析】
∵y=3x+1的图象沿y轴向下平移2个单位长度,
∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.
故答案为y=3x﹣1.
15、(,)
【解析】
根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.
【详解】
解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,
则△DEF的边长是△ABC边长的倍,
∴点F的坐标为(1×,×),即(,),
故答案为:(,).
【点睛】
本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
16、
【解析】
将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
【详解】
解:将三个小区分别记为A、B、C,
列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为=.
故答案为:.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
17、2
【解析】
分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,
∴设高为h,则6×2×h=16,解得:h=1.
∴它的表面积是:2×1×2+2×6×2+1×6×2=2.
18、15π−18.
【解析】
根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.
【详解】
S阴影部分=S扇形ACE+S扇形BCD-S△ABC,
∵S扇形ACE==12π,
S扇形BCD==3π,
S△ABC=×6×6=18,
∴S阴影部分=12π+3π−18=15π−18.
故答案为15π−18.
【点睛】
本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)12;(3)t=或t=或t=1.
【解析】
试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.
试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,
∴x1+x2=8,
由.
解得:.
∴B(2,0)、C(6,0)
则4m﹣16m+4m+2=0,
解得:m=,
∴该抛物线解析式为:y=;.
(2)可求得A(0,3)
设直线AC的解析式为:y=kx+b,
∵
∴
∴直线AC的解析式为:y=﹣x+3,
要构成△APC,显然t≠6,分两种情况讨论:
当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),
∵P(t,),∴PF=,
∴S△APC=S△APF+S△CPF
=
=
=,
此时最大值为:,
②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),
∵P(t,),∴PM=,
∴S△APC=S△APF﹣S△CPF=
=
=,
当t=8时,取最大值,最大值为:12,
综上可知,当0<t≤8时,△APC面积的最大值为12;
(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,
Q(t,3),P(t,),
①当2<t≤6时,AQ=t,PQ=,
若:△AOB∽△AQP,则:,
即:,
∴t=0(舍),或t=,
若△AOB∽△PQA,则:,
即:,
∴t=0(舍)或t=2(舍),
②当t>6时,AQ′=t,PQ′=,
若:△AOB∽△AQP,则:,
即:,
∴t=0(舍),或t=,
若△AOB∽△PQA,则:,
即:,
∴t=0(舍)或t=1,
∴t=或t=或t=1.
考点:二次函数综合题.
20、商人盈利的可能性大.
【解析】
试题分析:根据几何概率的定义,面积比即概率.图中A,B,C所占的面积与总面积之比即为A,B,C各自的概率,算出相应的可能性,乘以钱数,比较即可.
试题解析:商人盈利的可能性大.
商人收费:80××2=80(元),商人奖励:80××3+80××1=60(元),因为80>60,所以商人盈利的可能性大.
21、(1);(2).
【解析】
分析:(1)过点D作DH⊥AB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;
(2)根据三角形的面积公式计算.
详解:(1)过点D作DH⊥AB,垂足为点H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.
∵,即CD=;
(2).
∵BD=2DE,∴.
点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
22、(1)① 6,② 2或4,③ 1<m<4;(2)或.
【解析】
(1)①根据“折线距离”的定义直接列式计算;
②根据“折线距离”的定义列出方程,求解即可;
③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.
(2)由题意可知,根据图像易得t的取值范围.
【详解】
解:(1) ①
②
∴
∴ b=2或4
③ ,
即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m<4
(2)设E(x,y),则,
如图,若点E在⊙F上,则.
【点睛】
本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.
23、2.
【解析】
将原式化简整理,整体代入即可解题.
【详解】
解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)
=x1﹣1x+1+x1﹣4x+x1﹣4
=3x1﹣2x﹣3,
∵x1﹣1x﹣1=1
∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.
【点睛】
本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.
24、不会有触礁的危险,理由见解析.
【解析】
分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得.
详解:过点A作AH⊥BC,垂足为点H.
由题意,得∠BAH=60°,∠CAH=45°,BC=1.
设AH=x,则CH=x.
在Rt△ABH中,∵,
解得:.
∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
25、此车没有超过了该路段16m/s的限制速度.
【解析】
分析:根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.
详解:由题意得:∠DCA=60°,∠DCB=45°,
在Rt△CDB中,tan∠DCB=,
解得:DB=200,
在Rt△CDA中,tan∠DCA=,
解得:DA=200,
∴AB=DA﹣DB=200﹣200≈146米,
轿车速度,
答:此车没有超过了该路段16m/s的限制速度.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.
26、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
【解析】
试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.
试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.
由题意,
解得,
答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.
由题意w=100a+150(200﹣a)=﹣50a+30000,
∵﹣50<0,
∴w随x的增大而减小,
∴当a取最小值,w有最大值,
∵200﹣a≤2a,
∴a≥,
∴当a=67时,w最小=﹣50×67+30000=26650(元),
此时200﹣67=133kg,
答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.
27、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
【解析】
【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
【详解】(1)∵点A在直线y1=1x﹣1上,
∴设A(x,1x﹣1),
过A作AC⊥OB于C,
∵AB⊥OA,且OA=AB,
∴OC=BC,
∴AC=OB=OC,
∴x=1x﹣1,
x=1,
∴A(1,1),
∴k=1×1=4,
∴;
(1)∵,解得:,,
∴C(﹣1,﹣4),
由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.
【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
江苏省苏州市振华中学2023届中考数学模试卷含解析: 这是一份江苏省苏州市振华中学2023届中考数学模试卷含解析,共23页。
2022年江苏省苏州市高新区实验中考数学最后冲刺模拟试卷含解析: 这是一份2022年江苏省苏州市高新区实验中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了近似数精确到,在平面直角坐标系内,点P,下列说法正确的是等内容,欢迎下载使用。
2022年潮南区实验中学中考数学最后冲刺模拟试卷含解析: 这是一份2022年潮南区实验中学中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,八边形的内角和为,不等式组的解集是,一次函数的图象不经过等内容,欢迎下载使用。