年终活动
搜索
    上传资料 赚现金

    天津市滨湖中学2021-2022学年中考数学押题卷含解析

    天津市滨湖中学2021-2022学年中考数学押题卷含解析第1页
    天津市滨湖中学2021-2022学年中考数学押题卷含解析第2页
    天津市滨湖中学2021-2022学年中考数学押题卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    天津市滨湖中学2021-2022学年中考数学押题卷含解析

    展开

    这是一份天津市滨湖中学2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题中错误的有个,的倒数是等内容,欢迎下载使用。
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
    一、选择题(共10小题,每小题3分,共30分)
    1.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )
    A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠0
    2.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
    A.B.C.D.
    3.如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是
    A.50°B.70°C.80°D.110°
    4.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )
    A.B.C.D.
    5.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米
    A.B.C.+1D.3
    6.下列命题中错误的有( )个
    (1)等腰三角形的两个底角相等
    (2)对角线相等且互相垂直的四边形是正方形
    (3)对角线相等的四边形为矩形
    (4)圆的切线垂直于半径
    (5)平分弦的直径垂直于弦
    A.1 B.2 C.3 D.4
    7.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )
    A.B.C.D.
    8.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为( )
    A.B.C.5D.
    9.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
    某同学分析上表后得出如下结论:
    ①甲、乙两班学生的平均成绩相同;
    ②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
    ③甲班成绩的波动比乙班大.
    上述结论中,正确的是( )
    A.①②B.②③C.①③D.①②③
    10.的倒数是( )
    A.﹣B.2C.﹣2D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.
    12.抛物线 的顶点坐标是________.
    13.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:
    从平均价格看,谁买得比较划算?( )
    A.一样划算 B.小菲划算C.小琳划算 D.无法比较
    14.关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为________.
    15.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)
    16.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.
    三、解答题(共8题,共72分)
    17.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
    18.(8分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:
    A.放下自我,彼此尊重; B.放下利益,彼此平衡;
    C.放下性格,彼此成就; D.合理竞争,合作双赢.
    要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:
    (1)参加本次讨论的学生共有 人;表中a= ,b= ;
    (2)在扇形统计图中,求D所在扇形的圆心角的度数;
    (3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.
    19.(8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:
    (1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:
    从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?
    20.(8分)计算:(﹣2)2+20180﹣
    21.(8分)计算:2sin30°﹣|1﹣|+()﹣1
    22.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
    (1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;
    (2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;
    (3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.
    23.(12分)如图,已知抛物线经过,两点,顶点为.
    (1)求抛物线的解析式;
    (2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
    (3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
    24.如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.
    (1)计算:若十字框的中间数为17,则a+b+c+d=______.
    (2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;
    (3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;
    (4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.
    【详解】
    ∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,
    ∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,
    ∴k>﹣1,
    ∵抛物线y=kx2﹣2x﹣1为二次函数,
    ∴k≠0,
    则k的取值范围为k>﹣1且k≠0,
    故选C.
    【点睛】
    本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.
    2、D
    【解析】
    从正面看,共2列,左边是1个正方形,
    右边是2个正方形,且下齐.
    故选D.
    3、C
    【解析】
    根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
    【详解】
    因为a∥b,
    所以∠1=∠BAD=50°,
    因为AD是∠BAC的平分线,
    所以∠BAC=2∠BAD=100°,
    所以∠2=180°-∠BAC=180°-100°=80°.
    故本题正确答案为C.
    【点睛】
    本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.
    4、C
    【解析】
    先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.
    【详解】
    解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
    后面一排分别有2个、3个、1个小正方体搭成三个长方体,
    并且这两排右齐,故从正面看到的视图为:

    故选:C.
    【点睛】
    本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.
    5、C
    【解析】
    由题意可知,AC=1,AB=2,∠CAB=90°
    据勾股定理则BC=m;
    ∴AC+BC=(1+)m.
    答:树高为(1+)米.
    故选C.
    6、D
    【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.
    详解:等腰三角形的两个底角相等,(1)正确;
    对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;
    对角线相等的平行四边形为矩形,(3)错误;
    圆的切线垂直于过切点的半径,(4)错误;
    平分弦(不是直径)的直径垂直于弦,(5)错误.
    故选D.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    7、D
    【解析】
    作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
    ∴OD=AE=5,
    ,
    ∴正方形的面积是: ,故选D.
    8、D
    【解析】
    解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴ AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离.
    在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE= ==,即PA+PB的最小值为.故选D.
    9、D
    【解析】
    分析:根据平均数、中位数、方差的定义即可判断;
    详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
    根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
    根据方差可知,甲班成绩的波动比乙班大.
    故①②③正确,
    故选D.
    点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    10、B
    【解析】
    根据乘积是1的两个数叫做互为倒数解答.
    【详解】
    解:∵×1=1
    ∴的倒数是1.
    故选B.
    【点睛】
    本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    如图作DH⊥AE于H,连接CG.设DG=x,
    ∵∠DCE=∠DEC,
    ∴DC=DE,
    ∵四边形ABCD是正方形,
    ∴AD=DC,∠ADF=90°,
    ∴DA=DE,
    ∵DH⊥AE,
    ∴AH=HE=DG,
    在△GDC与△GDE中,

    ∴△GDC≌△GDE(SAS),
    ∴GC=GE,∠DEG=∠DCG=∠DAF,
    ∵∠AFD=∠CFG,
    ∴∠ADF=∠CGF=90°,
    ∴2∠GDE+2∠DEG=90°,
    ∴∠GDE+∠DEG=45°,
    ∴∠DGH=45°,
    在Rt△ADH中,AD=8,AH=x,DH=x,
    ∴82=x2+(x)2,
    解得:x=,
    ∵△ADH∽△AFD,
    ∴,
    ∴AF==4.
    故答案为4.
    12、(0,-1)
    【解析】
    ∵a=2,b=0,c=-1,∴-=0, ,
    ∴抛物线的顶点坐标是(0,-1),
    故答案为(0,-1).
    13、C
    【解析】
    试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.
    考点:平均数的计算.
    14、a≥﹣1且a≠1
    【解析】
    利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣)≥1,然后求出两个不等式的公共部分即可.
    【详解】
    根据题意得a≠1且△=(﹣1)2﹣4a•(﹣)≥1,解得:a≥﹣1且a≠1.
    故答案为a≥﹣1且a≠1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
    15、②③④
    【解析】
    试题解析:根据已知条件不能推出OA=OD,∴①错误;
    ∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,
    ∴DE=DF,∠AED=∠AFD=90°,
    在Rt△AED和Rt△AFD中,

    ∴Rt△AED≌Rt△AFD(HL),
    ∴AE=AF,
    ∵AD平分∠BAC,
    ∴AD⊥EF,∴②正确;
    ∵∠BAC=90°,∠AED=∠AFD=90°,
    ∴四边形AEDF是矩形,
    ∵AE=AF,
    ∴四边形AEDF是正方形,∴③正确;
    ∵AE=AF,DE=DF,
    ∴AE2+DF2=AF2+DE2,∴④正确;
    ∴②③④正确,
    16、
    【解析】
    设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.
    【详解】
    解:设圆锥的底面圆的半径为r,
    连结AB,如图,
    ∵扇形OAB的圆心角为90°,
    ∴∠AOB=90°,
    ∴AB为圆形纸片的直径,
    ∴AB=4cm,
    ∴OB=cm,
    ∴扇形OAB的弧AB的长=π,
    ∴2πr=π,
    ∴r=(cm).
    故答案为.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.
    三、解答题(共8题,共72分)
    17、(1);(2)
    【解析】
    (1)利用概率公式直接计算即可;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
    【详解】
    (1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
    ∴小明选择去白鹿原游玩的概率=;
    (2)画树状图分析如下:
    两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
    所以小明和小华都选择去秦岭国家植物园游玩的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    18、(1)50、10、0.16;(2)144°;(3).
    【解析】
    (1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,
    (2)用360°乘以D观点的频率即可得;
    (3)画出树状图,然后根据概率公式列式计算即可得解
    【详解】
    解:(1)参加本次讨论的学生共有12÷0.24=50,
    则a=50×0.2=10,b=8÷50=0.16,
    故答案为50、10、0.16;
    (2)D所在扇形的圆心角的度数为360°×0.4=144°;
    (3)根据题意画出树状图如下:
    由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,
    所以选中观点D(合理竞争,合作双赢)的概率为.
    【点睛】
    此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
    19、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.
    【解析】
    【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;
    (2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;
    (3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.
    【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),
    所以m=×100=20,
    故答案为50,20;
    (2)O型献血的人数为46%×50=23(人),
    A型献血的人数为50﹣10﹣5﹣23=12(人),
    补全表格中的数据如下:
    故答案为12,23;
    (3)从献血者人群中任抽取一人,其血型是A型的概率=,
    3000×=720,
    估计这3000人中大约有720人是A型血.
    【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
    20、﹣1
    【解析】
    分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.
    详解:原式=4+1-6=-1.
    点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.
    21、4﹣
    【解析】
    原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.
    【详解】
    原式=2×﹣( ﹣1)+2
    =1﹣+1+2
    =4﹣.
    【点睛】
    本题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    22、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3)
    【解析】
    试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
    (2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;
    (3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.
    试题解析:(1)AE=DF,AE⊥DF,
    理由是:∵四边形ABCD是正方形,
    ∴AD=DC,∠ADE=∠DCF=90°,
    ∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,
    ∴DE=CF,
    在△ADE和△DCF中

    ∴,
    ∴AE=DF,∠DAE=∠FDC,
    ∵∠ADE=90°,∴∠ADP+∠CDF=90°,
    ∴∠ADP+∠DAE=90°,
    ∴∠APD=180°-90°=90°,
    ∴AE⊥DF;
    (2)(1)中的结论还成立,
    有两种情况:
    ①如图1,当AC=CE时,
    设正方形ABCD的边长为a,由勾股定理得,

    则;
    ②如图2,当AE=AC时,
    设正方形ABCD的边长为a,由勾股定理得:

    ∵四边形ABCD是正方形,
    ∴∠ADC=90°,即AD⊥CE,
    ∴DE=CD=a,
    ∴CE:CD=2a:a=2;
    即CE:CD=或2;
    (3)∵点P在运动中保持∠APD=90°,
    ∴点P的路径是以AD为直径的圆,
    如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,
    此时CP的长度最大,
    ∵在Rt△QDC中,
    ∴,
    即线段CP的最大值是.
    点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.
    23、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.
    【解析】
    分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
    (2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
    可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
    (3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.
    详解: (1)已知抛物线经过,,
    ∴,解得,
    ∴所求抛物线的解析式为.
    (2)∵,,∴,,
    可得旋转后点的坐标为.
    当时,由得,
    可知抛物线过点.
    ∴将原抛物线沿轴向下平移1个单位长度后过点.
    ∴平移后的抛物线解析式为:.
    (3)∵点在上,可设点坐标为,
    将配方得,∴其对称轴为.由题得B1(0,1).
    ①当时,如图①,
    ∵,
    ∴,
    ∴,
    此时,
    ∴点的坐标为.
    ②当时,如图②,
    同理可得,
    ∴,
    此时,
    ∴点的坐标为.
    综上,点的坐标为或.
    点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.
    24、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.
    【解析】
    (1)直接相加即得到答案;
    (2)根据(1)猜想a+b+c+d=4x;
    (3)用x表示a、b、c、d,相加后即等于4x;
    (4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.
    【详解】
    (1)5+15+19+29=68,
    故答案为68;
    (2)根据(1)猜想a+b+c+d=4x,
    答案为:4倍;
    (3)a=x-12,b=x-2,c=x+2,d=x+12,
    ∴a+b+c+d=x-12+x-2+x+2+x+12=4x,
    ∴猜想正确;
    (4)M=a+b+c+d+x=4x+x=5x,
    若M=5x=1,解得:x=404,
    但整个数表所有的数都为奇数,故不成立,
    ∴M的值不能等于1.
    【点睛】
    本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.
    班级
    参加人数
    平均数
    中位数
    方差

    55
    135
    149
    191

    55
    135
    151
    110
    价格/(元/kg)
    12
    10
    8
    合计/kg
    小菲购买的数量/kg
    2
    2
    2
    6
    小琳购买的数量/kg
    1
    2
    3
    6
    观点
    频数
    频率
    A
    a
    0.2
    B
    12
    0.24
    C
    8
    b
    D
    20
    0.4
    血型
    A
    B
    AB
    O
    人数

    10
    5

    血型
    A
    B
    AB
    O
    人数
    12
    10
    5
    23

    相关试卷

    天津市红桥区2021-2022学年中考数学押题卷含解析:

    这是一份天津市红桥区2021-2022学年中考数学押题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    天津市河西区环湖中学2021-2022学年中考押题数学预测卷含解析:

    这是一份天津市河西区环湖中学2021-2022学年中考押题数学预测卷含解析,共21页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年天津市滨海新区中考押题数学预测卷含解析:

    这是一份2021-2022学年天津市滨海新区中考押题数学预测卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,方程的解是.,下列各式中,正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map