天津市静海县名校2022年初中数学毕业考试模拟冲刺卷含解析
展开1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,AB是的直径,点C,D在上,若,则的度数为
A.B.C.D.
2.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是
A.第一象限B.第二象限C.第三象限D.第四象限
3.如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=( )
A.9B.10C.12D.13
4.函数与在同一坐标系中的大致图象是( )
A、 B、 C、 D、
5.抛物线y=3(x﹣2)2+5的顶点坐标是( )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
6.下列现象,能说明“线动成面”的是( )
A.天空划过一道流星
B.汽车雨刷在挡风玻璃上刷出的痕迹
C.抛出一块小石子,石子在空中飞行的路线
D.旋转一扇门,门在空中运动的痕迹
7.下列图形中,既是中心对称图形又是轴对称图形的是( )
A.B.
C.D.
8.估算的运算结果应在( )
A.2到3之间B.3到4之间
C.4到5之间D.5到6之间
9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正确结论的个数是( )
A.4B.3C.2D.1
10.在Rt△ABC中,∠C=90°,那么sin∠B等于( )
A.B.C.D.
11.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )
A.B.
C.D.
12.下列各数:1.414,,﹣,0,其中是无理数的为( )
A.1.414B.C.﹣D.0
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.
14.在实数范围内分解因式:x2y﹣2y=_____.
15.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.
16.在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心.
已知:.
求作:所在圆的圆心.
曈曈的作法如下:如图2,
(1)在上任意取一点,分别连接,;
(2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
老师说:“曈曈的作法正确.”
请你回答:曈曈的作图依据是_____.
17.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.
18.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)
(1)当y=0时,求x的值.
(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求ct∠MCB的值.
20.(6分)计算:.
21.(6分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人,a= ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
22.(8分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.
(1)求∠EPF的大小;
(2)若AP=6,求AE+AF的值.
23.(8分)解方程:1+
24.(10分)解方程: +=1.
25.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.
26.(12分)如图,菱形中,分别是边的中点.求证:.
27.(12分)(1)计算:()﹣3×[﹣()3]﹣4cs30°+;
(2)解方程:x(x﹣4)=2x﹣8
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题解析:连接AC,如图,
∵AB为直径,
∴∠ACB=90°,
∴
∴
故选B.
点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.
2、A
【解析】
∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,
∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.
∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:
①当,时,函数的图象经过第一、二、三象限;
②当,时,函数的图象经过第一、三、四象限;
③当,时,函数的图象经过第一、二、四象限;
④当,时,函数的图象经过第二、三、四象限.
因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.
3、A
【解析】
由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.
【详解】
∵,
∴.
又∵EF∥BC,
∴△AEF∽△ABC.
∴.
∴1S△AEF=S△ABC.
又∵S四边形BCFE=8,
∴1(S△ABC﹣8)=S△ABC,
解得:S△ABC=1.
故选A.
4、D.
【解析】
试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
故选D.
考点:一次函数和反比例函数的图象.
5、C
【解析】
根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
【详解】
∵抛物线解析式为y=3(x-2)2+5,
∴二次函数图象的顶点坐标是(2,5),
故选C.
【点睛】
本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
6、B
【解析】
本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;
【详解】
解:∵A、天空划过一道流星说明“点动成线”,
∴故本选项错误.
∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,
∴故本选项正确.
∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,
∴故本选项错误.
∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,
∴故本选项错误.
故选B.
【点睛】
本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.
7、D
【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【详解】
解:A. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
B. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;
C. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
D. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.
8、D
【解析】
解:= ,∵2<<3,∴在5到6之间.
故选D.
【点睛】
此题主要考查了估算无理数的大小,正确进行计算是解题关键.
9、B
【解析】
试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.
解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴在y轴的右侧,
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,
而a<0,
∴<0,所以②错误;
∵C(0,c),OA=OC,
∴A(﹣c,0),
把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
∴ac﹣b+1=0,所以③正确;
设A(x1,0),B(x2,0),
∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,
∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,
∴x1•x2=,
∴OA•OB=﹣,所以④正确.
故选B.
考点:二次函数图象与系数的关系.
10、A
【解析】
根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.
【详解】
根据在△ABC中,∠C=90°,
那么sinB= =,
故答案选A.
【点睛】
本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.
11、D
【解析】
因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,
根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,
可以列出方程:.
故选D.
12、B
【解析】
试题分析:根据无理数的定义可得是无理数.故答案选B.
考点:无理数的定义.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.
【详解】
画树状图如下:
由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,
所以两次摸到一个红球和一个黄球的概率为,
故答案为.
【点睛】
本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
14、y(x+)(x﹣)
【解析】
先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
【详解】
x2y-2y=y(x2-2)=y(x+)(x-).
故答案为y(x+)(x-).
【点睛】
本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
15、1
【解析】
首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.
【详解】
∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),
∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,
∴AB=AC,
∵∠BPC=90°,
∴PA=AB=AC=a,
如图延长AD交⊙D于P′,此时AP′最大,
∵A(1,0),D(4,4),
∴AD=5,
∴AP′=5+1=1,
∴a的最大值为1.
故答案为1.
【点睛】
圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.
16、①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
【解析】
(1)在上任意取一点,分别连接,;
(2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
【详解】
解:根据线段的垂直平分线的性质定理可知:,
所以点是所在圆的圆心(理由①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆):)
故答案为①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
【点睛】
本题考查作图﹣复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
17、4.1.
【解析】
取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.
【详解】
解:取CD的值中点M,连接GM,FM.
∵AG=CG,AE=EB,
∴GE是△ABC的中位线
∴EG=BC,
同理可证:FM=BC,EF=GM=AD,
∵AD=BC=6,
∴EG=EF=FM=MG=3,
∴四边形EFMG是菱形,
∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,
∴△EGF的面积的最大值为S四边形EFMG=4.1,
故答案为4.1.
【点睛】
本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.
18、1+
【解析】
试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;
过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.
解:连接AB,则AB为⊙M的直径.
Rt△ABO中,∠BAO=∠OCB=60°,
∴OB=OA=×=.
过B作BD⊥OC于D.
Rt△OBD中,∠COB=45°,
则OD=BD=OB=.
Rt△BCD中,∠OCB=60°,
则CD=BD=1.
∴OC=CD+OD=1+.
故答案为1+.
点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1),;(2)
【解析】
(1)当y=0,则x2-4x-5=0,解方程即可得到x的值.
(2) 由题意易求M,P点坐标,再求出MP的直线方程,可得ct∠MCB.
【详解】
(1)把代入函数解析式得,
即,
解得:,.
(2)把代入得,即得,
∵二次函数,与轴的交点为,∴点坐标为.
设直线的解析式为,代入,得解得,
∴,
∴点坐标为,
在中,又∵
∴.
【点睛】
本题考查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.
20、
【解析】
【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.
【详解】原式=
=
=.
【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.
21、(1)300,10; (2)有800人;(3) .
【解析】试题分析:
试题解析:(1)120÷40%=300,
a%=1﹣40%﹣30%﹣20%=10%,
∴a=10,
10%×300=30,
图形如下:
(2)2000×40%=800(人),
答:估计该校选择“跑步”这种活动的学生约有800人;
(3)画树状图为:
共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,
所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.
考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.
22、(1)∠EPF=120°;(2)AE+AF=6.
【解析】
试题分析: (1)过点P作PG⊥EF于G,解直角三角形即可得到结论;
(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,Rt△PME≌Rt△PNF,问题即可得证.
试题解析:
(1)如图1,过点P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
在△FPG中,sin∠FPG= ,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,
∵四边形ABCD是菱形,
∴AD=AB,DC=BC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,
,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM= ∠DAB=30°,
∴AM=AP•cs30°=3 ,同理AN=3 ,
∴AE+AF=(AM-EM)+(AN+NF)=6.
【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.
23、无解.
【解析】
两边都乘以x(x-3),去分母,化为整式方程求解即可.
【详解】
解:去分母得:x2﹣3x﹣x2=3x﹣18,
解得:x=3,
经检验x=3是增根,分式方程无解.
【点睛】
题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
24、-3
【解析】
试题分析:解得x=-3
经检验: x=-3是原方程的根.
∴原方程的根是x=-3
考点:解一元一次方程
点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
25、证明见解析.
【解析】
(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.
(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.
【详解】
证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.
又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.
∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,
∴△AFE≌△BCA(HL).∴AC=EF.
(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.
∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.
∵AC=EF,AC=AD,∴EF=AD.
∴四边形ADFE是平行四边形.
考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.
26、证明见解析.
【解析】
根据菱形的性质,先证明△ABE≌△ADF,即可得解.
【详解】
在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.
∵点E,F分别是BC,CD边的中点,
∴BE=BC,DF=CD,
∴BE=DF.
∴△ABE≌△ADF,
∴AE=AF.
27、(1)3;(1)x1=4,x1=1.
【解析】
(1)根据有理数的混合运算法则计算即可;
(1)先移项,再提取公因式求解即可.
【详解】
解:(1)原式=8×(﹣)﹣4×+1
=8×﹣1+1
=3;
(1)移项得:x(x﹣4)﹣1(x﹣4)=0,
(x﹣4)(x﹣1)=0,
x﹣4=0,x﹣1=0,
x1=4,x1=1.
【点睛】
本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.
天津市宁河县名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份天津市宁河县名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,-10-4的结果是,下列运算正确的是等内容,欢迎下载使用。
天津市北辰区名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份天津市北辰区名校2022年初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是,已知A样本的数据如下等内容,欢迎下载使用。
2022届天津市河北区重点达标名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2022届天津市河北区重点达标名校初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了如图,将函数y=,下列命题是假命题的是,的绝对值是等内容,欢迎下载使用。