天津市重点中学2021-2022学年中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)
2.比1小2的数是( )
A. B. C. D.
3.下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
4.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )
A.204×103 B.20.4×104 C.2.04×105 D.2.04×106
5.关于x的方程=无解,则k的值为( )
A.0或 B.﹣1 C.﹣2 D.﹣3
6.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为( )
A.正比例函数y=kx(k为常数,k≠0,x>0)
B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)
C.反比例函数y=(k为常数,k≠0,x>0)
D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)
7.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为( )
A.135×107 B.1.35×109 C.13.5×108 D.1.35×1014
8.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为( )
A.15° B.35° C.25° D.45°
9.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( )
A.3×109 B.3×108 C.30×108 D.0.3×1010
10.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为( )
A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×1011
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式:mx2﹣4m=_____.
12.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.
13.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.
14.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
15.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了______结果保留根号.
16.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.
三、解答题(共8题,共72分)
17.(8分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.
18.(8分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.
(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;
(2)求证:四边形ABCE是矩形.
19.(8分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.
20.(8分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且
AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
21.(8分)观察下列等式:
22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
…第④个等式为 ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
22.(10分)如图,在△ABC中,∠ACB=90°,AC=1.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.
(1)求证;四边形PBEC是平行四边形;
(2)填空:
①当AP的值为 时,四边形PBEC是矩形;
②当AP的值为 时,四边形PBEC是菱形.
23.(12分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
24.如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
通过取点、画图、测量,得到了x与y的几组值,如下表:
0
1
2
3
3
6
说明:补全表格时相关数据保留一位小数
建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
作出图形,结合图形进行分析可得.
【详解】
如图所示:
①以AC为对角线,可以画出▱AFCB,F(-3,1);
②以AB为对角线,可以画出▱ACBE,E(1,-1);
③以BC为对角线,可以画出▱ACDB,D(3,1),
故选B.
2、C
【解析】
1-2=-1,故选C
3、B
【解析】
分析:根据一元二次方程根的判别式判断即可.
详解:A、x2+6x+9=0.
△=62-4×9=36-36=0,
方程有两个相等实数根;
B、x2=x.
x2-x=0.
△=(-1)2-4×1×0=1>0.
方程有两个不相等实数根;
C、x2+3=2x.
x2-2x+3=0.
△=(-2)2-4×1×3=-8<0,
方程无实根;
D、(x-1)2+1=0.
(x-1)2=-1,
则方程无实根;
故选B.
点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.
4、C
【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.
考点:科学记数法—表示较大的数.
5、A
【解析】
方程两边同乘2x(x+3),得
x+3=2kx,
(2k-1)x=3,
∵方程无解,
∴当整式方程无解时,2k-1=0,k=,
当分式方程无解时,①x=0时,k无解,
②x=-3时,k=0,
∴k=0或时,方程无解,
故选A.
6、C
【解析】
延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.
【详解】
延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,
∵AE,BF为圆O的切线,
∴OE⊥AE,OF⊥FB,
∴∠AEO=∠BFO=90°,
在Rt△AEO和Rt△BFO中,
∵,
∴Rt△AEO≌Rt△BFO(HL),
∴∠A=∠B,
∴△QAB为等腰三角形,
又∵O为AB的中点,即AO=BO,
∴QO⊥AB,
∴∠QOB=∠QFO=90°,
又∵∠OQF=∠BQO,
∴△QOF∽△QBO,
∴∠B=∠QOF,
同理可以得到∠A=∠QOE,
∴∠QOF=∠QOE,
根据切线长定理得:OD平分∠EOG,OC平分∠GOF,
∴∠DOC=∠EOF=∠A=∠B,
又∵∠GCO=∠FCO,
∴△DOC∽△OBC,
同理可以得到△DOC∽△DAO,
∴△DAO∽△OBC,
∴,
∴AD•BC=AO•OB=AB2,即xy=AB2为定值,
设k=AB2,得到y=,
则y与x满足的函数关系式为反比例函数y=(k为常数,k≠0,x>0).
故选C.
【点睛】
本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.
7、B
【解析】
科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将1350000000用科学记数法表示为:1350000000=1.35×109,
故选B.
【点睛】
本题考查科学记数法的表示方法. 科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.
8、A
【解析】
根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.
【详解】
∵AB=AC,
∴∠ABC=∠ACB=65°,
∴∠A=180°-∠ABC-∠ACB=50°,
∵DC//AB,
∴∠ACD=∠A=50°,
又∵∠D=∠A=50°,
∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,
故选A.
【点睛】
本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.
9、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
将数据30亿用科学记数法表示为,
故选A.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
10、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
31600000000=3.16×1.故选:C.
【点睛】
本题考查科学记数法,解题的关键是掌握科学记数法的表示.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、m(x+2)(x﹣2)
【解析】
提取公因式法和公式法相结合因式分解即可.
【详解】
原式
故答案为
【点睛】
本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
12、或1
【解析】
图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=,
图2,当∠MB’C=90°,∠A=90°,AB=AC,
∠C=45°,
所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,
所以BM=1.
【详解】
请在此输入详解!
13、
【解析】
根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.
【详解】
∵点A坐标为(3,4),
∴OA==5,
∴cosα=,
故答案为
【点睛】
本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.
14、
【解析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
【详解】
由根与系数的关系得:m+n=,mn=,
∴m2+n2=(m+n)2-2mn=()2-2×=,
故答案为:.
【点睛】
本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
15、
【解析】
根据题意画出图形,进而利用锐角三角函数关系得出答案.
【详解】
解:如图1所示:
过点A作于点D,
由题意可得:,
则是等边三角形,
故BC,
则,
如图2所示:
过点A作于点E,
由题意可得:,
则是等腰直角三角形,,
则,
故梯子顶端离地面的高度AD下降了
故答案为:.
【点睛】
此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键.
16、54
【解析】
试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;
第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,
共有10个正方体,
∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,
∴搭成的大正方体的共有4×4×4=64个小正方体,
∴至少还需要64-10=54个小正方体.
【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.
三、解答题(共8题,共72分)
17、(1)CD=BE,理由见解析;(1)证明见解析.
【解析】
(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
【详解】
解:(1)CD=BE,理由如下:
∵△ABC和△ADE为等腰三角形,
∴AB=AC,AD=AE,
∵∠EAD=∠BAC,
∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
即∠EAB=∠CAD,
在△EAB与△CAD中,
∴△EAB≌△CAD,
∴BE=CD;
(1)∵∠BAC=90°,
∴△ABC和△ADE都是等腰直角三角形,
∴∠ABF=∠C=45°,
∵△EAB≌△CAD,
∴∠EBA=∠C,
∴∠EBA=45°,
∴∠EBF=90°,
在Rt△BFE中,BF1+BE1=EF1,
∵AF平分DE,AE=AD,
∴AF垂直平分DE,
∴EF=FD,
由(1)可知,BE=CD,
∴BF1+CD1=FD1.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
18、 (1)见解析;(2)见解析.
【解析】
(1)根据题意作图即可;
(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.
【详解】
(1)解:如图所示:E点即为所求;
(2)证明:∵CE⊥BC,
∴∠BCE=90°,
∵∠ABC=90°,
∴∠BCE+∠ABC=180°,
∴AB∥CE,
∴∠ABE=∠CEB,∠BAC=∠ECA,
∵BD为AC边上的中线,
∴AD=DC,
在△ABD和△CED中
,
∴△ABD≌△CED(AAS),
∴AB=EC,
∴四边形ABCE是平行四边形,
∵∠ABC=90°,
∴平行四边形ABCE是矩形.
【点睛】
本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.
19、证明见解析.
【解析】
由题意易用角角边证明△BDE≌△CDF,得到DF=DE,再用等量代换的思想用含有AE和AF的等式表示AD的长.
【详解】
证明:∵CF⊥AD于,BE⊥AD,
∴BE∥CF,∠EBD=∠FCD,
又∵AD是△ABC的中线,
∴BD=CD,
∴在△BED与△CFD中,
,
∴△△BED≌△CFD(AAS)
∴ED=FD,
又∵AD=AF+DF①,
AD=AE-DE②,
由①+②得:AF+AE=2AD.
【点睛】
该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.
20、(1)见解析
(2)当AF=时,四边形BCEF是菱形.
【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.
(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.
【详解】
(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.
∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,
∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.
∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G,
∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形.
∵∠ABC=90°,AB=4,BC=3,
∴AC=.
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.
∴,即.∴.
∵FG=CG,∴FC=2CG=,
∴AF=AC﹣FC=5﹣.
∴当AF=时,四边形BCEF是菱形.
21、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.
【解析】
(1)根据①②③的规律即可得出第④个等式;
(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.
【详解】
(1)∵22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
∴第④个等式为52﹣2×4=42+1,
故答案为:52﹣2×4=42+1,
(2)第n个等式为(n+1)2﹣2n=n2+1.
(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.
【点睛】
本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.
22、证明见解析;(2)①9;②12.5.
【解析】
(1)根据对角线互相平分的四边形为平行四边形证明即可;
(2)①若四边形PBEC是矩形,则∠APC=90°,求得AP即可;
②若四边形PBEC是菱形,则CP=PB,求得AP即可.
【详解】
∵点D是BC的中点,∴BD=CD.
∵DE=PD,∴四边形PBEC是平行四边形;
(2)①当∠APC=90°时,四边形PBEC是矩形.
∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴当AP的值为9时,四边形PBEC是矩形;
②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以设BC=4x,AB=5x,则(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.
当PC=PB时,四边形PBEC是菱形,此时点P为AB的中点,所以AP=12.5,∴当AP的值为12.5时,四边形PBEC是菱形.
【点睛】
本题考查了菱形的判定、平行四边形的判定和性质、矩形的判定,解题的关键是掌握特殊图形的判定以及重要的性质.
23、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
【解析】
(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.
【详解】
(1)设抛物线解析式为,
当时,,
点的坐标为,
将点坐标代入解析式得,
解得:,
抛物线的函数表达式为;
(2)由抛物线的对称性得,
,
当时,,
矩形的周长
,
,
,
,
当时,矩形的周长有最大值,最大值为;
(3)如图,
当时,点、、、的坐标分别为、、、,
矩形对角线的交点的坐标为,
直线平分矩形的面积,
点是和的中点,
,
由平移知,
是的中位线,
,
所以抛物线向右平移的距离是1个单位.
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.
24、(1)(2)详见解析;(3).
【解析】
(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.
【详解】
经过测量,时,y值为
根据题意,画出函数图象如下图:
根据图象,可以发现,y的取值范围为:,
,
故答案为.
【点睛】
本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.
辽阳市重点中学2021-2022学年中考数学猜题卷含解析: 这是一份辽阳市重点中学2021-2022学年中考数学猜题卷含解析,共26页。试卷主要包含了计算4×的结果等于等内容,欢迎下载使用。
丽水市重点中学2021-2022学年中考数学猜题卷含解析: 这是一份丽水市重点中学2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,下列运算正确的是,的倒数的绝对值是等内容,欢迎下载使用。
2021-2022学年盘锦市重点中学中考数学猜题卷含解析: 这是一份2021-2022学年盘锦市重点中学中考数学猜题卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若等式等内容,欢迎下载使用。