天津市津南区咸水沽三中2022年中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )
A.85° B.75° C.60° D.30°
2.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG 于点E,CF⊥AG于点F,则AE-GF的值为( )
A.1 B. C. D.
3.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
4.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是( )
A.0 B.3 C.﹣3 D.﹣7
5.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )
A.-4℃ B.4℃ C.8℃ D.-8℃
6.cos30°=( )
A. B. C. D.
7.如图,若a∥b,∠1=60°,则∠2的度数为( )
A.40° B.60° C.120° D.150°
8.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 ° B.75° C.85° D.90°
9.如图所示,有一条线段是()的中线,该线段是( ).
A.线段GH B.线段AD C.线段AE D.线段AF
10.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )
A.2:3 B.3:2 C.4:5 D.4:9
11.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=( )
A. B.2 C. D.
12.下列说法正确的是( )
A.﹣3是相反数 B.3与﹣3互为相反数
C.3与互为相反数 D.3与﹣互为相反数
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.
14.(2017四川省攀枝花市)若关于x的分式方程无解,则实数m=_______.
15.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.
16.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则⊙O的半径为___________.
17.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为________.
18.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
1
1.5
2
2.5
3
3.5
4
y/cm
0
3.7
______
3.8
3.3
2.5
______
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为______cm.
20.(6分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
(1)求证:EF是⊙O的切线;
(2)求证:=4BP•QP.
21.(6分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.
22.(8分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
23.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.
根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
24.(10分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
25.(10分)(1)计算:sin45°
(2)解不等式组:
26.(12分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.
(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)
27.(12分)如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、
求二次函数的解析式;写出使一次函数值大于二次函数值的的取值范围;若直线与轴的交点为点,连结、,求的面积;
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
详解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选B.
点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
2、D
【解析】
设AE=x,则AB=x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.
【详解】
设AE=x,
∵四边形ABCD是矩形,
∴∠BAD=∠D=90°,CD=AB,
∵AG平分∠BAD,
∴∠DAG=45°,
∴△ADG是等腰直角三角形,
∴DG=AD=1,
∴AG=AD=,
同理:BE=AE=x, CD=AB=x,
∴CG=CD-DG=x -1,
同理: CG=GF,
∴FG= ,
∴AE-GF=x-(x-)=.
故选D.
【点睛】
本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.
3、D
【解析】
根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.
【详解】
解:观察图形可知图案D通过平移后可以得到.
故选D.
【点睛】
本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
4、B
【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
∴y随x的增大而减小,
∴在0≤x≤5范围内,
x=0时,函数值最大﹣2×0+3=3,
故选B.
【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
5、C
【解析】
根据题意列出算式,计算即可求出值.
【详解】
解:根据题意得:6-(-2)=6+2=8,
则室内温度比室外温度高8℃,
故选:C.
【点睛】
本题考查了有理数的减法,熟练掌握运算法则是解题的关键.
6、C
【解析】
直接根据特殊角的锐角三角函数值求解即可.
【详解】
故选C.
【点睛】
考点:特殊角的锐角三角函数
点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.
7、C
【解析】
如图:
∵∠1=60°,
∴∠3=∠1=60°,
又∵a∥b,
∴∠2+∠3=180°,
∴∠2=120°,
故选C.
点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.
8、C
【解析】
试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
如图,设AD⊥BC于点F.则∠AFB=90°,
∴在Rt△ABF中,∠B=90°-∠BAD=25°,
∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
即∠BAC的度数为85°.故选C.
考点: 旋转的性质.
9、B
【解析】
根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.
【详解】
根据三角形中线的定义知:线段AD是△ABC的中线.
故选B.
【点睛】
本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
10、A
【解析】
根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.
【详解】
由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
∴△A′B′C′∽△ABC,
∵△A'B'C'与△ABC的面积的比4:9,
∴△A'B'C'与△ABC的相似比为2:3,
∴ ,
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
11、C
【解析】
如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
【详解】
解:如图所示,
∵BD=2、CD=1,
∴BC===,
则sin∠BCA===,
故选C.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
12、B
【解析】
符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.
【详解】
A、3和-3互为相反数,错误;
B、3与-3互为相反数,正确;
C、3与互为倒数,错误;
D、3与-互为负倒数,错误;
故选B.
【点睛】
此题考查相反数问题,正确理解相反数的定义是解答此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、11.
【解析】
试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,
∴这7天中最大的日温差是11℃.
考点:1.有理数大小比较;2.有理数的减法.
14、3或1.
【解析】
解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;
②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.
综上所述:∴m的值为3或1.
故答案为3或1.
15、1°
【解析】
根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.
【详解】
∵△ABC≌△ADE,
∴∠BAC=∠DAE,AB=AD,
∴∠BAD=∠EAC=40°,
∴∠B=(180°-40°)÷2=1°,
故答案为1.
【点睛】
本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.
16、
【解析】
如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.
【详解】
如图,连接CO并延长,交AB于点F;
∵AC=BC,
∴CF⊥AB(垂径定理的推论);
∵BD是⊙O的直径,
∴AD⊥AB;设⊙O的半径为r;
∴AD∥OC,△ADE∽△COE,
∴AD:CO=DE:OE,
而DE=3,AD=5,OE=r-3,CO=r,
∴5:r=3:(r-3),
解得:r=,
故答案为.
【点睛】
该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.
17、(a+b)2﹣(a﹣b)2=4ab
【解析】
根据长方形面积公式列①式,根据面积差列②式,得出结论.
【详解】
S阴影=4S长方形=4ab①,
S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,
由①②得:(a+b)2﹣(a﹣b)2=4ab.
故答案为(a+b)2﹣(a﹣b)2=4ab.
【点睛】
本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.
18、2
【解析】
只要证明△PBC是等腰直角三角形即可解决问题.
【详解】
解:∵∠APO=∠BPO=30°,
∴∠APB=60°,
∵PA=PC=PB,∠APC=30°,
∴∠BPC=90°,
∴△PBC是等腰直角三角形,
∵OA=1,∠APO=30°,
∴PA=2OA=2,
∴BC=PC=2,
故答案为2.
【点睛】
本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)4,1;(2)见解析;(3)1.1或3.2
【解析】
(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.
(2)利用描点法画出函数图象即可;
(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;
【详解】
(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,
当x=4时,点P与B重合,此时BQ=1.
故答案为4,1.
(2)函数图象如图所示:
(3)如图,
在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,
∴∠BMQ=31°,
∴BQ=BM=2,
观察图象可知y=2时,对应的x的值为1.1或3.2.
故答案为1.1或3.2.
【点睛】
本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.
20、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.
考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
21、 (8+8)m.
【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.
【详解】
在Rt△EBC中,有BE=EC×tan45°=8m,
在Rt△AEC中,有AE=EC×tan30°=8m,
∴AB=8+8(m).
【点睛】
本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.
22、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.
【解析】
(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.
(3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可
【详解】
解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
(2)△BDF∽△CED∽△DEF,证明如下:
∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,
又∵∠EDF=∠B,
∴∠BFD=∠CDE.
∵AB=AC,
∴∠B=∠C.
∴△BDF∽△CED.
∴.
∵BD=CD,
∴,即.
又∵∠C=∠EDF,
∴△CED∽△DEF.
∴△BDF∽△CED∽△DEF.
(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,
∴AD⊥BC,BD=BC=1.
在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,
∴AD=2.
∴S△ABC=•BC•AD=×3×2=42,
S△DEF=S△ABC=×42=3.
又∵•AD•BD=•AB•DH,
∴.
∵△BDF∽△DEF,
∴∠DFB=∠EFD.
∵DH⊥BF,DG⊥EF,
∴∠DHF=∠DGF.
又∵DF=DF,
∴△DHF≌△DGF(AAS).
∴DH=DG=.
∵S△DEF=·EF·DG=·EF·=3,
∴EF=4.
【点睛】
本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.
23、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.
【解析】
(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;
用待定系数法求出一次函数解析式,再代入进行运算即可.
【详解】
(1)汽车行驶400千米,剩余油量30升,
即加满油时,油量为70升.
(2)设,把点,坐标分别代入得,,
∴,当时,,即已行驶的路程为650千米.
【点睛】
本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.
24、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
【解析】
(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【详解】
(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
根据题意得:,
解得:x=40,
经检验,x=40是原分式方程的解,且符合题意,
∴x=×40=60,
答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;
(2)设安排甲队工作m天,则安排乙队工作天,
根据题意得:7m+5×≤145,
解得:m≥10,
答:至少安排甲队工作10天.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
25、(1);(2)﹣2<x≤1.
【解析】
(1)根据绝对值、特殊角的三角函数值可以解答本题;
(2)根据解一元一次不等式组的方法可以解答本题.
【详解】
(1)sin45°
=3-+×-5+×
=3-+3-5+1
=7--5;
(2)(2)
由不等式①,得
x>-2,
由不等式②,得
x≤1,
故原不等式组的解集是-2<x≤1.
【点睛】
本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
26、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米
【解析】
分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
详解:过P作PF⊥BD于F,作PE⊥AB于E,
∵斜坡的坡度i=5:1,
设PF=5x,CF=1x,
∵四边形BFPE为矩形,
∴BF=PEPF=BE.
在RT△ABC中,BC=90,
tan∠ACB=,
∴AB=tan63.4°×BC≈2×90=180,
∴AE=AB-BE=AB-PF=180-5x,
EP=BC+CF≈90+10x.
在RT△AEP中,
tan∠APE=,
∴x=,
∴PF=5x=.
答:此人所在P的铅直高度约为14.3米.
由(1)得CP=13x,
∴CP=13×37.1,BC+CP=90+37.1=17.1.
答:从P到点B的路程约为17.1米.
点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
27、(1);(2)或;(3)1.
【解析】
(1)直接将已知点代入函数解析式求出即可;
(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x的取值范围;
(3)分别得出EO,AB的长,进而得出面积.
【详解】
(1)∵二次函数与轴的交点为和
∴设二次函数的解析式为:
∵在抛物线上,
∴3=a(0+3)(0-1),
解得a=-1,
所以解析式为:;
(2)=−x2−2x+3,
∴二次函数的对称轴为直线;
∵点、是二次函数图象上的一对对称点;
∴;
∴使一次函数大于二次函数的的取值范围为或;
(3)设直线BD:y=mx+n,
代入B(1,0),D(−2,3)得,
解得:,
故直线BD的解析式为:y=−x+1,
把x=0代入得,y=3,
所以E(0,1),
∴OE=1,
又∵AB=1,
∴S△ADE=×1×3−×1×1=1.
【点睛】
此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.
2024年天津市津南区天津市咸水沽第四中学中考一模数学试题(原卷版+解析版): 这是一份2024年天津市津南区天津市咸水沽第四中学中考一模数学试题(原卷版+解析版),文件包含2024年天津市津南区天津市咸水沽第四中学中考一模数学试题原卷版docx、2024年天津市津南区天津市咸水沽第四中学中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
天津市滨海新区东沽中学2019年中考数学模拟(4月)试卷(含解析): 这是一份天津市滨海新区东沽中学2019年中考数学模拟(4月)试卷(含解析),共19页。试卷主要包含了计算,如图等内容,欢迎下载使用。
天津市天津市津南区天津市咸水沽第四中学2022-2023学年九年级下学期3月月考数学试题(含答案): 这是一份天津市天津市津南区天津市咸水沽第四中学2022-2023学年九年级下学期3月月考数学试题(含答案),共13页。试卷主要包含了计算,2sin60°的值等于,估计的值在,计算的结果为,方程组的解是,若点A等内容,欢迎下载使用。