2020-2022年湖南中考数学3年真题汇编 专题06 分式方程(学生卷+教师卷)
展开专题06 分式方程
一、单选题
1.(2022·江苏无锡)方程的解是( )
A. B. C. D.
2.(2022·内蒙古通辽)若关于的分式方程:的解为正数,则的取值范围为( )
A. B.且
C. D.且
3.(2022·辽宁营口)分式方程的解是( )
A. B. C. D.
4.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为vkm/h,则符合题意的方程是( )
A. B.
C. D.
5.(2022·海南)分式方程的解是( )
A. B. C. D.
6.(2022·黑龙江哈尔滨)方程的解为( )
A. B. C. D.
7.(2022·黑龙江)已知关于x的分式方程的解是正数,则m的取值范围是( )
A. B. C.且 D.且
8.(2022·山东潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:).2022年3月当月增速为,设2021年3月原油进口量为x万吨,下列算法正确的是( )
A. B.
C. D.
9.(2021·四川巴中)关于x的分式方程3=0有解,则实数m应满足的条件是( )
A.m=﹣2 B.m≠﹣2 C.m=2 D.m≠2
10.(2021·内蒙古呼伦贝尔)若关于x的分式方程无解,则a的值为( )
A.3 B.0 C. D.0或3
11.(2021·四川宜宾)若关于x的分式方程有增根,则m的值是( )
A.1 B.﹣1 C.2 D.﹣2
12.(2021·广西贺州)若关于的分式方程有增根,则的值为( )
A.2 B.3 C.4 D.5
13.(2021·黑龙江)已知关于的分式方程的解为非负数,则的取值范围是( )
A. B.且 C. D.且
14.(2020·黑龙江鹤岗)已知关于的分式方程的解为非正数,则的取值范围是( )
A. B. C. D.
15.(2020·湖北荆门)已知关于x的分式方程的解满足,且k为整数,则符合条件的所有k值的乘积为( )
A.正数 B.负数 C.零 D.无法确定
16.(2020·黑龙江牡丹江)若关于x的方程的解为正数,则m的取值范围是( )
A. B.且 C. D.且
17.(2020·四川泸州)已知关于x的分式方程的解为非负数,则正整数m的所有个数为( )
A.3 B.4 C.5 D.6
18.(2020·重庆)若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为( )
A.-1 B.-2 C.-3 D.0
19.(2020·重庆)若关于x的一元一次不等式结的解集为;且关于的分式方程有正整数解,则所有满足条件的整数a的值之积是( )
A.7 B.-14 C.28 D.-56
20.(2022·重庆)关于x的分式方程的解为正数,且关于y的不等式组的解集为,则所有满足条件的整数a的值之和是( )
A.13 B.15 C.18 D.20
21.(2022·四川遂宁)若关于x的方程无解,则m的值为( )
A.0 B.4或6 C.6 D.0或4
22.(2022·重庆)若关于的一元一次不等式组的解集为,且关于的分式方程的解是负整数,则所有满足条件的整数的值之和是( )
A.-26 B.-24 C.-15 D.-13
23.(2022·四川德阳)关于x的方程的解是正数,则a的取值范围是( )
A.a>-1 B.a>-1且a≠0 C.a<-1 D.a<-1且a≠-2
24.(2020·云南昆明)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是( )
A.1600元 B.1800元 C.2000元 D.2400元
25.(2020·黑龙江齐齐哈尔)若关于x的分式方程=+5的解为正数,则m的取值范围为( )
A.m<﹣10 B.m≤﹣10
C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣6
26.(2020·黑龙江牡丹江)若关于x的分式方程有正整数解,则整数m的值是( )
A.3 B.5 C.3或5 D.3或4
27.(2020·黑龙江黑龙江)已知关于的分式方程的解为正数,则的取值范围是( )
A. B.且
C. D.且
28.(2020·山东枣庄)对于实数、,定义一种新运算“”为:,这里等式右边是实数运算.例如:.则方程的解是( )
A. B. C. D.
二、填空题
29.(2022·辽宁大连)方程的解是_______.
30.(2022·湖南永州)解分式方程去分母时,方程两边同乘的最简公分母是______.
31.(2021·湖北黄石)分式方程的解是______.
32.(2020·山东济南)代数式与代数式的值相等,则x=_____.
33.(2020·山东潍坊)若关于的分式方程有增根,则的值为_____.
34.(2022·广东广州)分式方程的解是________
35.(2022·黑龙江齐齐哈尔)若关于x的分式方程的解大于1,则m的取值范围是______________.
36.(2021·湖北湖北)关于x的方程有两个实数根.且.则_______.
37.(2021·湖南常德)分式方程的解为__________.
38.(2021·四川凉山)若关于x的分式方程的解为正数,则m的取值范围是_________.
39.(2020·四川巴中)若关于x的分式方程有增根,则_________.
40.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为,需香樟数量之比为,并且甲、乙两山需红枫数量之比为.在实际购买时,香樟的价格比预算低,红枫的价格比预算高,香樟购买数量减少了,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.
41.(2021·山东潍坊)若x<2,且,则x=_______.
42.(2021·四川雅安)若关于x的分式方程的解是正数,则k的取值范围是______.
43.(2021·辽宁本溪)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A种奖品的单价比B种奖品的单价多10元,用300元购买A种奖品的数量与用240元购买B种奖品的数量相同.设B种奖品的单价是x元,则可列分式方程为________.
44.(2021·河北)用绘图软件绘制双曲线:与动直线:,且交于一点,图1为时的视窗情形.
(1)当时,与的交点坐标为__________;
(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的,其可视范围就由及变成了及(如图2).当和时,与的交点分别是点A和,为能看到在A和之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,则整数__________.
45.(2020·四川眉山)关于的分式方程的解为正实数,则的取值范围是________.
46.(2020·内蒙古呼和浩特)分式与的最简公分母是_______,方程的解是____________.
47.(2020·四川内江)若数a使关于x的分式方程的解为非负数,且使关于y的不等式组的解集为,则符合条件的所有整数a的积为_____________
48.(2020·甘肃金昌)在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有_____个.
三、解答题
49.(2022·青海西宁)解方程:.
50.(2022·广西梧州)解方程:
51.(2022·广西贺州)解方程:.
52.(2022·山西)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.
53.(2022·广西桂林)今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.
(1)求在甲,乙两个商店租用的服装每套各多少元?
(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.
54.(2022·贵州铜仁)科学规范戴口罩是阻断遵守病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?
55.(2022·辽宁)2022年3月23日“天官课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A、B两款物理实验套装,其中A款套装单价是B款套装单价的1.2倍,用9900元购买的A款套装数量比用7500元购买的B款套装数量多5套.求A、B两款套装的单价分别是多少元.
56.(2022·吉林长春)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?
57.(2022·山东烟台)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?
58.(2020·广西)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.
(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?
59.(2020·贵州黔南)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.
(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?
(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?
60.(2022·广东深圳)某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的电脑的单价比乙种类型的要便宜10元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.
(1)求甲乙两种类型笔记本的单价.
(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少?
61.(2022·广西柳州)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.
(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?
62.(2022·山东聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.
(1)求实际施工时,每天改造管网的长度;
(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?
63.(2022·内蒙古呼和浩特)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.
(1)问去年每吨土豆的平均价格是多少元?
(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?
64.(2022·广西)金鷹酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:
(1)甲,乙两个工程队每天各安装多少台空调,才能同时完成任务?
(2)金鹰酒店响应“縁色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度:据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时,若电费0.8元/度,请你估计该酒店毎天所有客房空调所用电费 W(单位:元)的范围?
65.(2022·贵州遵义)遵义市开展信息技术与教学深度融合的精准化教学某实验学校计划购买,两种型号教学设备,已知型设备价格比型设备价格每台高20%,用30000元购买型设备的数量比用15000元购买型设备的数量多4台.
(1)求,型设备单价分别是多少元?
(2)该校计划购买两种设备共50台,要求型设备数量不少于型设备数量的.设购买台型设备,购买总费用为元,求与的函数关系式,并求出最少购买费用.
66.(2021·山东青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.
(1)求两种品牌洗衣液的进价;
(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?
67.(2021·内蒙古呼和浩特)为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动,去年学校通过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?
68.(2021·内蒙古通辽)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.
(1)求甲、乙两种消毒液的零售价分别是每桶多少元?
(2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共300桶,且甲种消毒液的桶数不少于乙种消毒液桶数的,由于购买量大,甲、乙两种消毒液分别获得了20元/桶,15元/桶的批发价.求甲种消毒液购买多少桶时,所需资金总额最少?最少总金额是多少元?
69.(2021·广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
(1)求猪肉粽和豆沙粽每盒的进价;
(2)设猪肉粽每盒售价x元表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
70.(2021·山东济宁)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
71.(2021·湖北武汉)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.
72.(2020·黑龙江牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:
(1)A,B两种书包每个进价各是多少元?
(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B种书包各有几个?
73.(2020·四川攀枝花)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线的距离皆为.王诗嬑观测到高度矮圆柱的影子落在地面上,其长为;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线互相垂直,并视太阳光为平行光,测得斜坡坡度,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:
(1)若王诗嬑的身高为,且此刻她的影子完全落在地面上,则影子长为多少?
(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?
(3)若同一时间量得高圆柱落在坡面上的影子长为,则高圆柱的高度为多少?
(2020-2022)中考数学真题分类汇编专题06 分式方程(教师版): 这是一份(2020-2022)中考数学真题分类汇编专题06 分式方程(教师版),共56页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2020-2022年山东中考数学3年真题汇编 专题06 分式方程(学生卷+教师卷): 这是一份2020-2022年山东中考数学3年真题汇编 专题06 分式方程(学生卷+教师卷),文件包含专题06分式方程-三年2020-2022中考数学真题分项汇编山东专用解析版docx、专题06分式方程-三年2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
2020-2022年江苏中考数学3年真题汇编 专题05 分式方程(学生卷+教师卷): 这是一份2020-2022年江苏中考数学3年真题汇编 专题05 分式方程(学生卷+教师卷),文件包含专题05分式方程-三年2020-2022中考数学真题分项汇编江苏专用解析版docx、专题05分式方程-三年2020-2022中考数学真题分项汇编江苏专用原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。