终身会员
搜索
    上传资料 赚现金
    2.2.1 二次函数的图象与性质 ( y=x2与y=-x2) 北师大版九年级下册数学教案
    立即下载
    加入资料篮
    2.2.1 二次函数的图象与性质 ( y=x2与y=-x2) 北师大版九年级下册数学教案01
    2.2.1 二次函数的图象与性质 ( y=x2与y=-x2) 北师大版九年级下册数学教案02
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北师大版九年级下册2 二次函数的图像与性质教案及反思

    展开
    这是一份初中数学北师大版九年级下册2 二次函数的图像与性质教案及反思,共4页。教案主要包含了教学目标,教学重难点,教学过程,练习巩固,课堂小结等内容,欢迎下载使用。

    2.2  二次函数的图象与性质

    1课时 二次函数yx2y=-x2的图象与性质

    一、教学目标

    1.能够利用描点法作出二次函数yx2的图象,并能根据图象认识和理解二次函数yx2的性质.

    2.猜想并能作出二次函数y=-x2的图象,并能比较它与yx2的图象的异同.

    3.经历探索二次函数yx2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.

    二、教学重难点

    重点理解和掌握函数yx2y=-x2的图象与性质.

    难点比较yx2y=-x2的图象与性质的异同.

    三、教学过程

    复习导入

    1.二次函数的定义是什么?

    2.一次函数的图象是什么?性质是什么?

    3.反比例函数的图象是什么?性质是什么?

    4.画函数的图象有哪些步骤?

    教师提出上述问题,学生讨论后回答问题.

    探究新知

    1.画二次函数yx2的图象

    引导学生利用画函数的图象的步骤画出yx2的图象:

    (1)观察yx2的表达式,任意选择x值,并计算相应的y的值,完成下表:

     

    x

     

    y

     

    (2)在直角坐标系中描点.

    (3)用光滑的曲线连接各点,便得到函数yx2的图象.

    2.二次函数yx2的图象的性质

    问题1:图象与x轴有交点吗?如果有,交点坐标是什么?

    问题2:当x0时,随着x值的增大,y的值如何变化?当x0时呢?

    问题3:当x取什么值时,y的值最小?最小值是什么?你是如何知道的?

    问题4:图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.

    问题5:你能描述图象的形状吗?

    处理方式:第一步出示问题123,留给学生足够的时间思考并交流后,让学生自主回答.在学生回答完毕后教师点拨:这三个问题都与一个神秘的点有关,就是点(00),它叫做顶点.

    第二步出示问题4,学生自己考虑,并举手回答.在学生回答完毕后教师点拨:二次函数的图象为轴对称图形,对称轴为y轴,也可写成直线x 0.所以我们以后在列表时可以对称着列出各个点的数据.

    第三步出示问题5,学生先交流讨论后,教师利用课件动画演示并点拨:二次函数yx2的图象是一条抛物线,并且抛物线的开口向上.如果你在地球的另一端向斜上方扔一件物体,就是这种样子.

    3.二次函数y=-x2的图象与性质

    问题1:回顾一下画二次函数yx2的图象的步骤,你认为画图时需要注意什么?

    问题2:二次函数y=-x2的图象是什么形状?先猜一猜,然后在教材第33页画出它的图象.

    问题3:类比研究yx2的图象的方式,请回答:

    (1)你能描述y=-x2的图象的形状吗?开口方向呢?

    (2)y=-x2的图象的顶点坐标是什么?

    (3)y有最大值还是最小值?当x取什么值时,y的最值是什么?

    (4)图象是轴对称图形吗?如果是,它的对称轴是什么?

    (5)x0时,随着x值的增大,y的值如何变化?当x0时呢?

    处理方式:先出示问题1,让学生充分回顾思考后回答:列表的选点的对称性;点的准确性;连线的平滑性.如果学生回答不全,教师可适当提示或补充.

    再出示问题2,先让学生猜一猜,然后带着疑问画图.学生画图完毕后,选取部分学生所画的图进行展示.

    最后出示问题345,选取画图优秀的同学作业作为展示,同时出示5个问题,学生自主思考,如有困难可适当讨论,思考完毕后举手回答.

    举例分析

    1 (1)A(24)在二次函数yx2的图象上吗?

    (2)请分别写出点A关于x轴的对称点B的坐标、关于y轴的对称点C的坐标、关于原点O的对称点D的坐标;

    (3)BCD在二次函数yx2的图象上吗?在二次函数y=-x2的图象上吗?

    2 比较yx2y=-x2的图象有什么关系?

    处理方式:本环节问题比较大,可先留出时间让学生充分思考后,再组织交流讨论.学生可以有不同说法,只要意思正确即可.教师可以分别从相同点:开口大小、对称轴、顶点;不同点:开口方向、增减性、最值,联系:轴对称性、中心对称性等方面进行引导.

    四、练习巩固

    1.在函数yx2上有两点(1y1)(3y2),那么y1y20的大小关系是(   )

    Ay1y20   By2y10

    Cy1y20   Dy2y10

    2.如图,边长为2的正方形ABCD的中心是直角坐标系的原点OADx轴,抛物线yx2y=-x2分别经过点ABCD,将正方形成几部分,则图中阴影部分的面积为________

    3.已知正方形的周长为C cm,面积为S cm2.

    (1)SC之间的函数表达式,并画出图象;

    (2)根据图象,求出S1 cm2时,正方形的周长;

    (3)根据图象,求出C取何值时,S≥4 cm2.

    五、课堂小结

    1.二次函数yx2y=-x2的图象的画法:

    (1)选择适当的x值,计算相应的y的值;

    (2)在坐标系中描点;

    (3)用光滑的曲线连接各点,便得到函数的图象.

    2.二次函数yx2y=-x2的图象与性质:

     

    函数表达式

    yx2

    y=-x2

    开口方向

    向上

    向下

    对称轴

    y(直线x0)

     

    增减性

    x0时,yx的增大而减小

    x0时,yx的增大而增大

    x0时,yx的增大而增大

    x0时,yx的增大而减小

    对称轴顶

    点坐标

    原点(00)

     

    最值

    x0时,

    y有最小值为0

    x0时,

    y有最大值为0

      )布置作业

    教材第3435页习题2.21题.

    四、教学反思

    本节课的设计力求体现使学生学会学习,努力实现学生的主体地位,使数学教学成为一种过程教学,并注意教师角色的转变,为学生创造一种宽松、和谐,适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围,根据学生的实际水平,选择恰当的教学起点和教学方法.由此我采用问题猜想探究应用的学科教学模式,把主动权充分地还给学生,让学生在自己已有经验的基础上提出问题,明确学习任务,教师引导学生观察、发现、猜想、操作、动手实践、自主探索、合作交流,寻找解决的办法并最终探求到真正的结果,从而体会到数学的奥妙与成功的快乐.

     

     

    相关教案

    初中数学1 二次函数教案设计: 这是一份初中数学<a href="/sx/tb_c102698_t8/?tag_id=27" target="_blank">1 二次函数教案设计</a>,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    初中数学北师大版九年级下册2 二次函数的图像与性质教学设计及反思: 这是一份初中数学北师大版九年级下册2 二次函数的图像与性质教学设计及反思,共5页。教案主要包含了教学目标,教学重难点,教学过程,教学反思等内容,欢迎下载使用。

    初中数学北师大版九年级下册第二章 二次函数2 二次函数的图像与性质教学设计及反思: 这是一份初中数学北师大版九年级下册第二章 二次函数2 二次函数的图像与性质教学设计及反思,共4页。教案主要包含了教学目标,教学重难点,教学过程,教学反思等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map