【备战2023高考】数学考点全复习——第62讲《抛物线的标准方程与性质》精选题(新高考专用)
展开第62讲 抛物线的标准方程与性质
【基础知识回顾】
一、抛物线的定义
平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
二 、抛物线的标准方程与几何性质
标准方程 | y2=2px (p>0) | y2=-2px (p>0) | x2=2py (p>0) | x2=-2py (p>0) |
p的几何意义:焦点F到准线l的距离 | ||||
图形 | ||||
顶点 | O(0,0) | |||
对称轴 | x轴 | y轴 | ||
焦点 | F | F | F | F |
离心率 | e=1 | |||
准线 | x=- | x= | y=- | y= |
范围 | x≥0,y∈R | x≤0,y∈R | y≥0,x∈R | y≤0,x∈R |
开口方向 | 向右 | 向左 | 向上 | 向下 |
焦半径(其中P(x0,y0)) | = x0+ | = -x0+ | = y0+ | = -y0+ |
三 、 与焦点弦有关的常用结论
设A(x1,y1),B(x2,y2).
(1)y1y2=-p2,x1x2=.
(2)|AB|=x1+x2+p=(θ为AB的倾斜角).
(3)+为定值.
(4)以AB为直径的圆与准线相切.
(5)以AF或BF为直径的圆与y轴相切.
1、抛物线y=2x2的准线方程为( )
A.y=- B.y=-
C.y=- D.y=-1
【答案】 A
【解析】 由y=2x2,得x2=y,故抛物线y=2x2的准线方程为y=-.
2、过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于( )
A.9 B.8 C.7 D.6
【答案】 B
【解析】 抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,
|PQ|=|PF|+|QF|=x1+1+x2+1
=x1+x2+2=8.
3、抛物线y2=x上一点P到焦点的距离是2,则P点坐标为( )
A. B. C. D.
【答案】 D
【解析】 设P(x0,y0),则|PF|=x0+=x0+=2,∴ x0=,∴ y0=±.
4、已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为( )
A. B. C. D.
【答案】 A
【解析】 因为抛物线C:y2=2px的准线为x=-,且点A(-2,3)在准线上,故=-2,
解得p=4,所以y2=8x,所以焦点F的坐标为(2,0),这时直线AF的斜率kAF==-.
5、已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是________.
【答案】 y2=±4x
【解析】由已知可知双曲线的焦点为
(-,0),(,0).
设抛物线方程为y2=±2px(p>0),则=,
所以p=2,所以抛物线方程为y2=±4x.
考向一 抛物线的定义及其应用
例1 (1)已知抛物线定点在原点,对称轴为坐标轴,焦点在直线x-y+2=0上,则抛物线方程为____.
(2)动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为____.
【答案】(1)y2=-8x或x2=8y (2)y2=4x
【解析】 (1)直线x-y+2=0与坐标轴的交点分别为(-2,0)和(0,2),当焦点为(-2,0)时,抛物线焦点在x轴负半轴上,且p=4,则抛物线方程为y2=-8x;当焦点为(0,2)时,抛物线焦点在y轴正半轴上且p=4,则抛物线方程为x2=8y;故抛物线方程为y2=-8x或x2=8y.
(2)设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x.
变式1、过抛物线y2=2px(p>0)的焦点F的任意一条直线m,交抛物线于P1,P2两点,求证:以P1P2为直径的圆和该抛物线的准线相切.
证明:如图,设P1P2的中点为P0,过P1,P2,P0分别向准线l引垂线,垂足分别为Q1,Q2,Q0.
根据抛物线的定义,得|P1F|=|P1Q1|,|P2F|=|P2Q2|,
所以|P1P2|=|P1F|+|P2F|=|P1Q1|+|P2Q2|.
因为P1Q1∥P0Q0∥P2Q2,|P1P0|=|P0P2|,
所以|P0Q0|=(|P1Q1|+|P2Q2|)=|P1P2|.
由此可知,P0Q0是以P1P2为直径的圆P0的半径,且P0Q0⊥l,因此,圆P0与准线相切.
变式2、 (1)若在抛物线y2=-4x上存在一点P,使其到焦点F的距离与到A(-2,1)的距离之和最小,则该点的坐标为________.
【答案】
【解析】 如图,∵y2=-4x,∴p=2,焦点坐标为(-1,0).依题意可知当A,P及P到准线的垂足三点共线时,点P与点F、点P与点A的距离之和最小,故点P的纵坐标为1.将y=1代入抛物线方程求得x=-,则点P的坐标为.
(2)设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.
【答案】
【解析】 如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知点P到直线x=-1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为=.
(3)已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为________.
【答案】 2
【解析】 由题意知,抛物线的准线l:y=-1,过点A作AA1⊥l交l于点A1,过点B作BB1⊥l交l于点B1,设弦AB的中点为M,过点M作MM1⊥l交l于点M1,则|MM1|=.因为|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,所以|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故点M到x轴的距离d≥2,故最短距离为2.
方法总结:与抛物线有关的最值问题,一般情况下都与抛物线的定义有关,实现由点到点的距离与点到直线的距离的转化.
(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.
(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.
考向二 抛物线的标准方程及其几何性质
例2 若抛物线y2=2px(p>0)上一点M到准线及对称轴的距离分别为10和6,求M点的横坐标及抛物线方程.
【解析】:∵ 点M到对称轴的距离为6,
∴ 设点M的坐标为(x,6).
∵ 点M到准线的距离为10,
∴ 解得或
故当点M的横坐标为9时,抛物线方程为y2=4x.
当点M的横坐标为1时,抛物线方程为y2=36x.
变式1、(1)设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为( )
A.x=-4 B.x=-3
C.x=-2 D.x=-1
【答案】 A
【解析】 直线2x+3y-8=0与x轴的交点为(4,0),∴抛物线y2=2px的焦点为(4,0),∴准线方程为x=-4.
(2)(2022·广州模拟)已知抛物线x2=2py(p>0)的焦点为F,准线为l,点P(4,y0)在抛物线上,K为l与y轴的交点,且|PK|=|PF|,则y0=________,p=________.
【答案】2 4
【解析】 作PM⊥l,垂足为M,由抛物线定义知|PM|=|PF|,又知|PK|=|PF|,
∴在Rt△PKM中,sin∠PKM===,
∴∠PKM=45°,∴△PMK为等腰直角三角形,
∴|PM|=|MK|=4,
又知点P在抛物线x2=2py(p>0)上,
∴解得
变式2、(2022·唐山模拟)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线r:y2=x,O为坐标原点,一束平行于x轴的光线l1从点P射入,经过r上的点A(x1,y1)反射后,再经r上另一点B(x2,y2)反射后,沿直线l2射出,经过点Q,则下列结论错误的是( )
A.y1y2=-1
B.|AB|=
C.PB平分∠ABQ
D.延长AO交直线x=-于点C,则C,B,Q三点共线
【答案】 A
【解析】 设抛物线的焦点为F,
则F.
因为P,
且l1∥x轴,
故A(1,1),
故直线AF:y==x-.
由可得y2-y-=0,
故y1y2=-,故A错误;
又y1=1,故y2=-,
故B,
故|AB|=1++=,故B正确;
直线AO:y=x,由
可得C,故yC=y2,
所以C,B,Q三点共线,故D正确;
因为|AP|=-1==|AB|,
故△APB为等腰三角形,
故∠ABP=∠APB,
而l1∥l2,故∠PBQ=∠APB,
即∠ABP=∠PBQ,
故PB平分∠ABQ,故C正确.
方法总结:1.求抛物线标准方程的方法
(1)定义法:若题目已给出抛物线的方程(含有未知数p),那么只需求出p即可.
(2)待定系数法:若题目未给出抛物线的方程,对于焦点在x轴上的抛物线的标准方程可统一设为y2=ax(a≠0),a的正负由题设来定;焦点在y轴上的抛物线的标准方程可设为x2=ay(a≠0),这样就减少了不必要的讨论.
2.抛物线性质的应用技巧
(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.
(2)要结合图形分析,灵活运用平面图形的性质简化运算
1、【2022年全国乙卷】设F为抛物线的焦点,点A在C上,点,若,则( )
A.2 B. C.3 D.
【答案】B
【解析】由题意得,,则,
即点到准线的距离为2,所以点的横坐标为,
不妨设点在轴上方,代入得,,
所以.
故选:B
2、【2021年新高考2卷】抛物线的焦点到直线的距离为,则( )
A.1 B.2 C. D.4
【答案】B
【解析】抛物线的焦点坐标为,
其到直线的距离:,
解得:(舍去).
故选:B.
3、【2020年新课标1卷理科】已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=( )
A.2 B.3 C.6 D.9
【答案】C
【解析】设抛物线的焦点为F,由抛物线的定义知,即,解得.
故选:C.
4、【2020年新课标3卷理科】设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为( )
A. B. C. D.
【答案】B
【解析】因为直线与抛物线交于两点,且,
根据抛物线的对称性可以确定,所以,
代入抛物线方程,求得,所以其焦点坐标为,
故选:B.
5、【2019年新课标2卷理科】若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=
A.2 B.3
C.4 D.8
【答案】D
【解析】
因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D
6、【2021年新高考1卷】已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为______.
【答案】
【解析】抛物线: ()的焦点,
∵P为上一点,与轴垂直,
所以P的横坐标为,代入抛物线方程求得P的纵坐标为,
不妨设,
因为Q为轴上一点,且,所以Q在F的右侧,
又,
因为,所以,
,
所以的准线方程为
故答案为:.
7、【2020年新高考1卷(山东卷)】斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.
【答案】
【解析】
∵抛物线的方程为,∴抛物线的焦点F坐标为,
又∵直线AB过焦点F且斜率为,∴直线AB的方程为:
代入抛物线方程消去y并化简得,
解法一:解得
所以
解法二:
设,则,
过分别作准线的垂线,设垂足分别为如图所示.
故答案为:
【备战2023高考】数学考点全复习——第72讲《正态分布》精选题(新高考专用): 这是一份【备战2023高考】数学考点全复习——第72讲《正态分布》精选题(新高考专用),文件包含备战2023高考数学考点全复习第72讲《正态分布》精选题解析版docx、备战2023高考数学考点全复习第72讲《正态分布》精选题原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
【备战2023高考】数学考点全复习——第65讲《排列与组合》精选题(新高考专用): 这是一份【备战2023高考】数学考点全复习——第65讲《排列与组合》精选题(新高考专用),文件包含备战2023高考数学考点全复习第65讲《排列与组合》精选题解析版docx、备战2023高考数学考点全复习第65讲《排列与组合》精选题原卷版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
【备战2023高考】数学考点全复习——第61讲《双曲线的标准方程与性质》精选题(新高考专用): 这是一份【备战2023高考】数学考点全复习——第61讲《双曲线的标准方程与性质》精选题(新高考专用),文件包含备战2023高考数学考点全复习第61讲《双曲线的标准方程与性质》精选题解析版docx、备战2023高考数学考点全复习第61讲《双曲线的标准方程与性质》精选题原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。