西藏自治区昌吉州重点达标名校2021-2022学年中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列各曲线中表示y是x的函数的是( )
A. B. C. D.
2.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )
A.②③ B.②⑤ C.①③④ D.④⑤
3.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
A.2、40 B.42、38 C.40、42 D.42、40
4.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )
A.31 B.35 C.40 D.50
5.不等式5+2x <1的解集在数轴上表示正确的是( ).
A. B. C. D.
6.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A. B. C. D.
7.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )
A. B. C. D.
8.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )
A.米 B.米 C.米 D.米
9.下列图案是轴对称图形的是( )
A. B. C. D.
10.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为( )
A.2 B.3 C.4 D.5
11.计算:得( )
A.- B.- C.- D.
12.如图,已知是的角平分线,是的垂直平分线,,,则的长为( )
A.6 B.5 C.4 D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算△ABC的周长等于_____.
(2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
___________________________.
14.同时掷两粒骰子,都是六点向上的概率是_____.
15.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是_____.
16.Rt△ABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在Rt△ABC的边上,当矩形DEFG的面积最大时,其对角线的长为_______.
17.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.
18.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,己知AB是的直径,C为圆上一点,D是的中点,于H,垂足为H,连交弦于E,交于F,联结.
(1)求证:.
(2)若,求的长.
20.(6分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.
21.(6分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
22.(8分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.
(1)证明:DE是⊙O的切线;
(2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,
(3)若⊙O的半径r=5,sinA=,求线段EF的长.
23.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
24.(10分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数 的图象交于点.
求反比例函数的表达式和一次函数表达式;
若点C是y轴上一点,且,直接写出点C的坐标.
25.(10分)列方程解应用题:
某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?
26.(12分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.
27.(12分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.
故选D.
2、B
【解析】
试题分析:
①、MN=AB,所以MN的长度不变;
②、周长C△PAB=(AB+PA+PB),变化;
③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;
④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;
⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.
故选B
考点:动点问题,平行线间的距离处处相等,三角形的中位线
3、D
【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
故选D.
【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
4、C
【解析】
根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.
【详解】
解:∵图1中棋子有5=1+2+1×2个,
图2中棋子有10=1+2+3+2×2个,
图3中棋子有16=1+2+3+4+3×2个,
…
∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,
故选C.
【点睛】
本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
5、C
【解析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
【详解】
5+1x<1,
移项得1x<-4,
系数化为1得x<-1.
故选C.
【点睛】
本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
6、A
【解析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
【详解】
设索长为x尺,竿子长为y尺,
根据题意得:.
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
7、A
【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
【详解】
设此多边形为n边形,
根据题意得:180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角等于:360°÷8=45°.
故选A.
【点睛】
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
8、A
【解析】
利用锐角三角函数关系即可求出小刚上升了的高度.
【详解】
在Rt△AOB中,∠AOB=90°,AB=300米,
BO=AB•sinα=300sinα米.
故选A.
【点睛】
此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
9、C
【解析】
解:A.此图形不是轴对称图形,不合题意;
B.此图形不是轴对称图形,不合题意;
C.此图形是轴对称图形,符合题意;
D.此图形不是轴对称图形,不合题意.
故选C.
10、C
【解析】
根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,
主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.
故选C.
【点睛】
错因分析 容易题,失分原因:未掌握通过三视图还原几何体的方法.
11、B
【解析】
同级运算从左向右依次计算,计算过程中注意正负符号的变化.
【详解】
-
故选B.
【点睛】
本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
12、D
【解析】
根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.
【详解】
∵ED是BC的垂直平分线,
∴DB=DC,
∴∠C=∠DBC,
∵BD是△ABC的角平分线,
∴∠ABD=∠DBC,
∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,
∴∠C=∠DBC=∠ABD=30°,
∴BD=2AD=6,
∴CD=6,
∴CE =3,
故选D.
【点睛】
本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
【解析】
(1)利用勾股定理求出AB,从而得到△ABC的周长;
(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.
【详解】
解:(1)∵AC=3,BC=4,∠C=90º,
∴根据勾股定理得AB=5,
∴△ABC的周长=5+4+3=12.
(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。
故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
【点睛】
本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.
14、.
【解析】
同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.
【详解】
解:都是六点向上的概率是.
【点睛】
本题考查了概率公式的应用.
15、﹣1.
【解析】
由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解.
【详解】
解:由题意得:当顶点在M处,点A横坐标为-3,
则抛物线的表达式为:y=a(x+1)2+4,
将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,
解得:a=-1,
当x=-1时,y=a-b+c,
顶点在N处时,y=a-b+c取得最小值,
顶点在N处,抛物线的表达式为:y=-(x-3)2+1,
当x=-1时,y=a-b+c=-(-1-3)2+1=-1,
故答案为-1.
【点睛】
本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.
16、或
【解析】
分两种情形画出图形分别求解即可解决问题
【详解】
情况1:如图1中,四边形DEFG是△ABC的内接矩形,设DE=CF=x,则BF=3-x
∵EF∥AC,
∴=
∴=
∴EF=(3-x)
∴S矩形DEFG=x•(3-x)=﹣(x-)2+3
∴x=时,矩形的面积最大,最大值为3,此时对角线=.
情况2:如图2中,四边形DEFG是△ABC的内接矩形,设DE=GF=x,
作CH⊥AB于H,交DG于T.则CH=,CT=﹣x,
∵DG∥AB,
∴△CDG∽△CAB,
∴
∴
∴DG=5﹣x,
∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,
∴x=时,矩形的面积最大为3,此时对角线==
∴矩形面积的最大值为3,此时对角线的长为或
故答案为或
【点睛】
本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题
17、 .
【解析】
试题分析:696000=6.96×1,故答案为6.96×1.
考点:科学记数法—表示较大的数.
18、10πcm1.
【解析】
根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=71°,于是得到结论.
【详解】
解:∵AC与BD是⊙O的两条直径,
∴∠ABC=∠ADC=∠DAB=∠BCD=90°,
∴四边形ABCD是矩形,
∴S△ABO=S△CDO =S△AOD=S△BOD,
∴图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,
∵OA=OB,
∴∠BAC=∠ABO=36°,
∴∠AOD=71°,
∴图中阴影部分的面积=1×=10π,
故答案为10πcm1.
点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)
【解析】
(1)由题意推出再结合,可得△BHE~△BCO.
(2)结合△BHE~△BCO ,推出带入数值即可.
【详解】
(1)证明:∵为圆的半径,是的中点,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
又∵,
∴∽.
(2)∵∽,
∴,
∵,,
∴得,
解得,
∴.
【点睛】
本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.
20、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
【解析】
(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
【详解】
(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
∴﹣a+3=2,b=﹣×4+3,
∴a=2,b=1,
∴点A的坐标为(2,2),点B的坐标为(4,1),
又∵点A(2,2)在反比例函数y=的图象上,
∴k=2×2=4,
∴反比例函数的表达式为y=(x>0);
(2)延长CA交y轴于点E,延长CB交x轴于点F,
∵AC∥x轴,BC∥y轴,
则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
∴四边形OECF为矩形,且CE=4,CF=2,
∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
=2×4﹣×2×2﹣×4×1
=4,
设点P的坐标为(0,m),
则S△OAP=×2•|m|=4,
∴m=±4,
∴点P的坐标为(0,4)或(0,﹣4).
【点睛】
此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
21、(1)证明见解析;(2)证明见解析;(3)4.
【解析】
试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.
点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
22、(1)见解析 (2)8(3)
【解析】
分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;
(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.
(3)先证Rt△DFB∽Rt△DCB得,据此求得BF的长,再证△EFB∽△EDO得,据此求得EB的长,继而由勾股定理可得答案.
详解:(1)如图,连接BD、OD,
∵AB是⊙O的直径,
∴∠BDA=90°,
∵BA=BC,
∴AD=CD,
又∵AO=OB,
∴OD∥BC,
∵DE⊥BC,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)设⊙O的半径为x,则OB=OD=x,
在Rt△ODE中,OE=4+x,∠E=30°,
∴,
解得:x=4,
∴DE=4,S△ODE=×4×4=8,
S扇形ODB=,
则S阴影=S△ODE-S扇形ODB=8-;
(3)在Rt△ABD中,BD=ABsinA=10×=2,
∵DE⊥BC,
∴Rt△DFB∽Rt△DCB,
∴,即,
∴BF=2,
∵OD∥BC,
∴△EFB∽△EDO,
∴,即,
∴EB=,
∴EF=.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.
23、(1)证明见解析;(2)CE=1.
【解析】
(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.
【详解】
(1)证明:如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵ BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵ ∠ACB=90° ,
∴∠OEA=∠ACB=90°,
∴ AC是⊙O的切线 .
(2)解:过O作OH⊥BF,
∴BH=BF=3,四边形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.
【点睛】
本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.
24、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).
【解析】
(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;
(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.
【详解】
(1)∵双曲线过,将代入,解得:.
∴所求反比例函数表达式为:.
∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.
(2)由,可得:,∴.
又∵,∴或,∴,或,.
【点睛】
本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.
25、(1)2000件;(2)90260元.
【解析】
(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价÷数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)用(1)的结论×2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论.
【详解】
解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,
根据题意得:-=4,
解得:x=2000,
经检验,x=2000是所列分式方程的解,且符合题意.
答:商场第一批购进衬衫2000件.
(2)2000×2=4000(件),
(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).
答:售完这两批衬衫,商场共盈利90260元.
【点睛】
本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.
26、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱
【解析】
试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;
(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解.
试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:
解得.
答:篮球每个50元,排球每个30元.
(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:
50m+30(20-m)≤1.
解得:m≤2.
又∵m≥8,∴8≤m≤2.
∵篮球的个数必须为整数,∴只能取8、9、2.
∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.
以上三个方案中,方案①最省钱.
点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.
27、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
【解析】
【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
根据题意得,,
解得,
经检验,是原方程的解,
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
甲乙两种商品的销售量为,
设甲种商品按原销售单价销售a件,则
,
解得,
答:甲种商品按原销售单价至少销售20件.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
2022届西藏自治区昌吉州重点达标名校中考试题猜想数学试卷含解析: 这是一份2022届西藏自治区昌吉州重点达标名校中考试题猜想数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,﹣22×3的结果是等内容,欢迎下载使用。
2022届新疆昌吉州奇台县重点达标名校中考数学模拟试题含解析: 这是一份2022届新疆昌吉州奇台县重点达标名校中考数学模拟试题含解析,共20页。试卷主要包含了的值是等内容,欢迎下载使用。