终身会员
搜索
    上传资料 赚现金

    烟台市2022年中考押题数学预测卷含解析

    立即下载
    加入资料篮
    烟台市2022年中考押题数学预测卷含解析第1页
    烟台市2022年中考押题数学预测卷含解析第2页
    烟台市2022年中考押题数学预测卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    烟台市2022年中考押题数学预测卷含解析

    展开

    这是一份烟台市2022年中考押题数学预测卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,的算术平方根是,下列交通标志是中心对称图形的为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下面计算中,正确的是(  )
    A.(a+b)2=a2+b2 B.3a+4a=7a2
    C.(ab)3=ab3 D.a2•a5=a7
    2.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是(  )
    A.有两个不相等实数根 B.有两个相等实数根
    C.有且只有一个实数根 D.没有实数根
    3.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为(  )

    A. B.π C.2π D.3π
    4.等式组的解集在下列数轴上表示正确的是(    ).
    A.           B.
    C.      D.
    5.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
    A. B.x(x+1)=1980
    C.2x(x+1)=1980 D.x(x-1)=1980
    6.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )
    A.1 B.-6 C.2或-6 D.不同于以上答案
    7.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为(  )
    A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
    8.的算术平方根是( )
    A.9 B.±9 C.±3 D.3
    9.下列交通标志是中心对称图形的为(  )
    A. B. C. D.
    10.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为(  )
    A.0.286×105 B.2.86×105 C.28.6×103 D.2.86×104
    二、填空题(共7小题,每小题3分,满分21分)
    11.=_____.
    12.若代数式有意义,则x的取值范围是__.
    13.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).

    14.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.

    15.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.

    16.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).

    17.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.

    19.(5分)已知:如图,∠ABC,射线BC上一点D,
    求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.

    20.(8分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.

    图 ①
    (2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.

    图 ②
    21.(10分)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后, 能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.
    例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;
    再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.
    (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.
    (2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.
    22.(10分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.
    (I)如图1,若α=30°,求点B′的坐标;
    (Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;
    (Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).

    23.(12分)(1)计算:﹣22+|﹣4|+()-1+2tan60°
    (2) 求 不 等 式 组的 解 集 .
    24.(14分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
    求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.
    【详解】
    A. (a+b)2=a2+b2+2ab,故此选项错误;
    B. 3a+4a=7a,故此选项错误;
    C. (ab)3=a3b3,故此选项错误;
    D. a2×a5=a7,正确。
    故选:D.
    【点睛】
    本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.
    2、A
    【解析】
    【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
    【详解】∵a=1,b=1,c=﹣3,
    ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
    ∴方程x2+x﹣3=0有两个不相等的实数根,
    故选A.
    【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    3、A
    【解析】
    根据旋转的性质和弧长公式解答即可.
    【详解】
    解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
    ∴∠AOC=90°,
    ∵OC=3,
    ∴点A经过的路径弧AC的长== ,
    故选:A.
    【点睛】
    此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.
    4、B
    【解析】
    【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.
    【详解】,
    解不等式①得,x>-3,
    解不等式②得,x≤2,
    在数轴上表示①、②的解集如图所示,

    故选B.
    【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    5、D
    【解析】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.
    【详解】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,
    ∴全班共送:(x﹣1)x=1980,
    故选D.
    【点睛】
    此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.
    6、C
    【解析】
    解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;
    ②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.
    故选C.
    点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.
    7、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    180000=1.8×105,
    故选A.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、D
    【解析】
    根据算术平方根的定义求解.
    【详解】
    ∵=9,
    又∵(±1)2=9,
    ∴9的平方根是±1,
    ∴9的算术平方根是1.
    即的算术平方根是1.
    故选:D.
    【点睛】
    考核知识点:算术平方根.理解定义是关键.
    9、C
    【解析】
    根据中心对称图形的定义即可解答.
    【详解】
    解:A、属于轴对称图形,不是中心对称的图形,不合题意;
    B、是中心对称的图形,但不是交通标志,不符合题意;
    C、属于轴对称图形,属于中心对称的图形,符合题意;
    D、不是中心对称的图形,不合题意.
    故选C.
    【点睛】
    本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.
    10、D
    【解析】
    用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可
    【详解】
    28600=2.86×1.故选D.
    【点睛】
    此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.
    详解:原式=1+2﹣2
    =1.
    故答案为:1.
    点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.
    12、x3
    【解析】
    由代数式有意义,得
    x-30,
    解得x3,
    故答案为: x3.
    【点睛】
    本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.
    13、6
    【解析】
    试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.
    解:过S作SC⊥AB于C.

    ∵∠SBC=60°,∠A=30°,
    ∴∠BSA=∠SBC﹣∠A=30°,
    即∠BSA=∠A=30°.
    ∴SB=AB=1.
    Rt△BCS中,BS=1,∠SBC=60°,
    ∴SC=SB•sin60°=1×=6(海里).
    即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里.
    故答案为:6.
    14、
    【解析】
    ∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,
    ∵∠CAC′=15°,
    ∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,
    ∴阴影部分的面积=×5×tan30°×5=.
    15、1
    【解析】
    ∵骑车的学生所占的百分比是×100%=35%,
    ∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
    ∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
    故答案为1.
    16、②③
    【解析】
    试题分析:∠BAD与∠ABC不一定相等,选项①错误;
    ∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;
    由AB是直径,则∠ACQ=90°,如果能说明P是斜边AQ的中点,那么P也就是这个直角三角形外接圆的圆心了.Rt△BQD中,∠BQD=90°-∠6, Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5, 所以∠8=∠7, 所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP; 所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.

    则正确的选项序号有②③.故答案为②③.
    考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.
    17、6°
    【解析】
    ∠B=48°,∠ACB=90°,所以∠A=42°,DC是中线,所以∠BCD=∠B=48°,
    ∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.

    三、解答题(共7小题,满分69分)
    18、 (1)证明见解析;(2).
    【解析】
    (1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;
    (2)根据含30°的直角三角形的性质、正切的定义计算即可.
    【详解】
    (1)∵AB是⊙O直径,BC⊥AB,
    ∴BC是⊙O的切线,
    ∵CD切⊙O于点D,
    ∴BC=CD;
    (2)连接BD,
    ∵BC=CD,∠C=60°,
    ∴△BCD是等边三角形,
    ∴BD=BC=3,∠CBD=60°,
    ∴∠ABD=30°,
    ∵AB是⊙O直径,
    ∴∠ADB=90°,
    ∴AD=BD•tan∠ABD=.

    【点睛】
    本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    19、见解析.
    【解析】
    根据角平分线的性质、线段的垂直平分线的性质即可解决问题.
    【详解】
    ∵点P在∠ABC的平分线上,
    ∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),
    ∵点P在线段BD的垂直平分线上,
    ∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),
    如图所示:

    【点睛】
    本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.
    20、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
    【解析】
    (1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
    【详解】
    (1)(1)当AB是过P点的直径时,AB最长=2×2=4;
    当AB⊥OP时,AB最短, AP=
    ∴AB=2
    (2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
    再做△AEC的外接圆,
    当D与E重合时,S△ADC最大
    故此时四边形ABCD的面积最大,
    ∵∠ABC=90°,AB=80,BC=60
    ∴AC=
    ∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
    S△ADC=
    S△ABC=
    ∴四边形ABCD面积最大值为(2500+2400)平方米.

    【点睛】
    此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
    21、 (1)见解析;(2) 201,207,1
    【解析】
    试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;
    (2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,最后用能被3整除即可.
    试题解析:
    (1)设两位自然数的十位数字为x,则个位数字为2x,
    ∴这个两位自然数是10x+2x=12x,
    ∴这个两位自然数是12x能被6整除,
    ∵依次轮换个位数字得到的两位自然数为10×2x+x=21x
    ∴轮换个位数字得到的两位自然数为21x能被7整除,
    ∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”.
    (2)∵三位自然数是3的一个“轮换数”,且a=2,
    ∴100a+10b+c能被3整除,
    即:10b+c+200能被3整除,
    第一次轮换得到的三位自然数是100b+10c+a能被4整除,
    即100b+10c+2能被4整除,
    第二次轮换得到的三位自然数是100c+10a+b能被5整除,
    即100c+b+20能被5整除,
    ∵100c+b+20能被5整除,
    ∴b+20的个位数字不是0,便是5,
    ∴b=0或b=5,
    当b=0时,
    ∵100b+10c+2能被4整除,
    ∴10c+2能被4整除,
    ∴c只能是1,3,5,7,9;
    ∴这个三位自然数可能是为201,203,205,207,209,
    而203,205,209不能被3整除,
    ∴这个三位自然数为201,207,
    当b=5时,∵100b+10c+2能被4整除,
    ∴10c+502能被4整除,
    ∴c只能是1,5,7,9;
    ∴这个三位自然数可能是为251,1,257,259,
    而251,257,259不能被3整除,
    ∴这个三位自然数为1,
    即这个三位自然数为201,207,1.
    【点睛】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b的值.
    22、(1)B'的坐标为(,3);(1)见解析 ;(3)﹣1.
    【解析】
    (1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,
    由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;
    (1)证明∠BPA'=90即可;
    (3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为﹣1.
    【详解】
    (Ⅰ)如图1,设A'B'与x轴交于点H,

    ∵OA=1,OB=1,∠AOB=90°,
    ∴∠ABO=∠B'=30°,
    ∵∠BOB'=α=30°,
    ∴BO∥A'B',
    ∵OB'=OB=1,
    ∴OH=OB'=,B'H=3,
    ∴点B'的坐标为(,3);
    (Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',
    ∴∠OBB'=∠OA'A=(180°﹣α),
    ∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,
    ∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,
    即AA'⊥BB';

    (Ⅲ)点P纵坐标的最小值为.
    如图,作AB的中点M(1,),连接MP,

    ∵∠APB=90°,
    ∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).
    ∴当PM⊥x轴时,点P纵坐标的最小值为﹣1.
    【点睛】
    本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.
    23、(1)1;(2)-1≤x

    相关试卷

    2022年江苏省宿迁市中考押题数学预测卷含解析:

    这是一份2022年江苏省宿迁市中考押题数学预测卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,若分式有意义,则的取值范围是,的相反数是等内容,欢迎下载使用。

    2022年连云港市中考押题数学预测卷含解析:

    这是一份2022年连云港市中考押题数学预测卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一次函数y=kx+k,下列实数中是无理数的是等内容,欢迎下载使用。

    2022届山东省临沂市中考押题数学预测卷含解析:

    这是一份2022届山东省临沂市中考押题数学预测卷含解析,共22页。试卷主要包含了下列运算正确的是,下列各数中最小的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map