搜索
    上传资料 赚现金
    英语朗读宝

    云南省昆明市盘龙区重点中学2021-2022学年中考数学四模试卷含解析

    云南省昆明市盘龙区重点中学2021-2022学年中考数学四模试卷含解析第1页
    云南省昆明市盘龙区重点中学2021-2022学年中考数学四模试卷含解析第2页
    云南省昆明市盘龙区重点中学2021-2022学年中考数学四模试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省昆明市盘龙区重点中学2021-2022学年中考数学四模试卷含解析

    展开

    这是一份云南省昆明市盘龙区重点中学2021-2022学年中考数学四模试卷含解析,共20页。试卷主要包含了解分式方程﹣3=时,去分母可得,有以下图形,已知抛物线y=ax2﹣,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列计算,正确的是(  )
    A. B.
    C.3 D.
    2.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为(  )

    A.2 B.3 C.4 D.5
    3.如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )

    A.-2 B.2 C.-4 D.4
    4.解分式方程﹣3=时,去分母可得(  )
    A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4
    C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4
    5.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有(  )
    A.5个 B.4个 C.3个 D.2个
    6.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为(  )

    A.70° B.65° C.62° D.60°
    7.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是(  )
    A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<0
    8.用配方法解方程时,可将方程变形为( )
    A. B. C. D.
    9.若(x﹣1)0=1成立,则x的取值范围是(  )
    A.x=﹣1 B.x=1 C.x≠0 D.x≠1
    10.下列计算正确的是  
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
    其中正确的序号是   (把你认为正确的都填上).

    12.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.

    13.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=,则BD=_____.

    14.如图所示,四边形ABCD中,,对角线AC、BD交于点E,且,,若,,则CE的长为_____.

    15.估计无理数在连续整数___与____之间.
    16.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.
    三、解答题(共8题,共72分)
    17.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
    (1)求口袋中黄球的个数;
    (2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
    18.(8分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
    (1)证明:∠C=∠D;
    (2)若∠BEF=140°,求∠C的度数;
    (3)若EF=2,tanB=3,求CE•CG的值.

    19.(8分)计算:解不等式组,并写出它的所有整数解.
    20.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
    被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
    21.(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
    若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
    22.(10分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=
    (1)当8<t≤24时,求P关于t的函数解析式;
    (2)设第t个月销售该原料药的月毛利润为w(单位:万元)
    ①求w关于t的函数解析式;
    ②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.

    23.(12分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
    调查结果统计表
    组别
    分组(单位:元)
    人数
    A
    0≤x<30
    4
    B
    30≤x<60
    16
    C
    60≤x<90
    a
    D
    90≤x<120
    b
    E
    x≥120
    2
    请根据以上图表,解答下列问题:填空:这次被调查的同学共有   人,a+b=   ,m=   ;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.

    24.已知:如图,△MNQ中,MQ≠NQ.
    (1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;

    (2)参考(1)中构造全等三角形的方法解决下面问题:
    如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据二次根式的加减法则,以及二次根式的性质逐项判断即可.
    【详解】
    解:∵=2,∴选项A不正确;
    ∵=2,∴选项B正确;
    ∵3﹣=2,∴选项C不正确;
    ∵+=3≠,∴选项D不正确.
    故选B.
    【点睛】
    本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
    2、C
    【解析】
    若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,
    即一共添加4个小正方体,
    故选C.
    3、C
    【解析】
    根据反比例函数k的几何意义,求出k的值即可解决问题
    【详解】
    解:∵过点P作PQ⊥x轴于点Q,△OPQ的面积为2,
    ∴||=2,
    ∵k<0,
    ∴k=-1.
    故选:C.
    【点睛】
    本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    4、B
    【解析】
    方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.
    【详解】
    方程两边同时乘以(x-2),得
    1﹣3(x﹣2)=﹣4,
    故选B.
    【点睛】
    本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
    5、C
    【解析】
    矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;
    等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
    平行四边形不是轴对称图形,是中心对称图形,不符合题意.
    共3个既是轴对称图形又是中心对称图形.
    故选C.
    6、A
    【解析】
    由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
    【详解】
    ∵AB∥CD,∠C=35°,
    ∴∠ABC=∠C=35°,
    ∵BC平分∠ABE,
    ∴∠ABE=2∠ABC=70°,
    ∵AB∥CD,
    ∴∠BED=∠ABE=70°.
    故选:A.
    【点睛】
    本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
    7、B
    【解析】
    由已知抛物线求出对称轴,
    解:抛物线:,对称轴,由判别式得出a的取值范围.
    ,,
    ∴,
    ①,.
    ②由①②得.
    故选B.
    8、D
    【解析】
    配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.
    【详解】
    解:



    故选D.
    【点睛】
    本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.
    9、D
    【解析】
    试题解析:由题意可知:x-1≠0,
    x≠1
    故选D.
    10、C
    【解析】
    根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.
    【详解】
    、与不是同类项,不能合并,此选项错误;
    、,此选项错误;
    、,此选项正确;
    、,此选项错误.
    故选:.
    【点睛】
    此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、①②④
    【解析】
    分析:∵四边形ABCD是正方形,∴AB=AD。
    ∵△AEF是等边三角形,∴AE=AF。
    ∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
    ∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
    ∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
    ∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
    如图,连接AC,交EF于G点,

    ∴AC⊥EF,且AC平分EF。
    ∵∠CAD≠∠DAF,∴DF≠FG。
    ∴BE+DF≠EF。∴③说法错误。
    ∵EF=2,∴CE=CF=。
    设正方形的边长为a,在Rt△ADF中,,解得,
    ∴。
    ∴。∴④说法正确。
    综上所述,正确的序号是①②④。
    12、210°
    【解析】
    根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.
    【详解】
    解:如图:

    ∵∠C=∠F=90°,∠A=45°,∠D=30°,
    ∴∠B=45°,∠E=60°,
    ∴∠2+∠3=120°,
    ∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,
    故答案为:210°.
    【点睛】
    本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
    13、2.
    【解析】
    由tan∠CBD== 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.
    【详解】
    解:在Rt△BCD中,∵tan∠CBD==,
    ∴设CD=3a、BC=4a,
    则BD=AD=5a,
    ∴AC=AD+CD=5a+3a=8a,
    在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
    解得:a= 或a=-(舍),
    则BD=5a=2,
    故答案为2.
    【点睛】
    本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.
    14、
    【解析】
    此题有等腰三角形,所以可作BH⊥CD,交EC于点G,利用三线合一性质及邻补角互补可得∠BGD=120°,根据四边形内角和360°,得到∠ABG+∠ADG=180°.此时再延长GB至K,使AK=AG,构造出等边△AGK.易证△ABK≌△ADG,从而说明△ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在Rt△DBH中利用勾股定理及三角函数知识得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG长度,最后CE=CG+GE求解.
    【详解】
    如图,作于H,交AC于点G,连接DG.

    ∵,
    ∴BH垂直平分CD,
    ∴,
    ∴,
    ∴,
    ∴,
    延长GB至K,连接AK使,则是等边三角形,
    ∴,
    又,
    ∴≌(),
    ∴,
    ∴是等边三角形,
    ∴,
    设,则,,
    ∴,
    ∴,
    在中,,解得,,
    当时,,所以,
    ∴,,,
    作,设,,,,,
    ∴,,
    ∴,则,
    故答案为
    【点睛】
    本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键.
    15、3 4
    【解析】
    先找到与11相邻的平方数9和16,求出算术平方根即可解题.
    【详解】
    解:∵,
    ∴,
    ∴无理数在连续整数3与4之间.
    【点睛】
    本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.
    16、6
    【解析】
    设这个扇形的半径为,根据题意可得:
    ,解得:.
    故答案为.

    三、解答题(共8题,共72分)
    17、 (1)1;(2)
    【解析】
    (1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;
    【详解】
    解:(1)设口袋中黄球的个数为个,
    根据题意得:
    解得:=1
    经检验:=1是原分式方程的解
    ∴口袋中黄球的个数为1个
    (2)画树状图得:

    ∵共有12种等可能的结果,两次摸出都是红球的有2种情况
    ∴两次摸出都是红球的概率为: .
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.
    18、(1)见解析;(2)70°;(3)1.
    【解析】
    (1)先根据等边对等角得出∠B=∠D,即可得出结论;
    (2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
    (3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
    【详解】
    (1)∵AB=AD,
    ∴∠B=∠D,
    ∵∠B=∠C,
    ∴∠C=∠D;
    (2)∵四边形ABEF是圆内接四边形,
    ∴∠DFE=∠B,
    由(1)知,∠B=∠D,
    ∴∠D=∠DFE,
    ∵∠BEF=140°=∠D+∠DFE=2∠D,
    ∴∠D=70°,
    由(1)知,∠C=∠D,
    ∴∠C=70°;
    (3)如图,由(2)知,∠D=∠DFE,
    ∴EF=DE,
    连接AE,OC,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴BE=DE,
    ∴BE=EF=2,
    在Rt△ABE中,tanB==3,
    ∴AE=3BE=6,根据勾股定理得,AB=,
    ∴OA=OC=AB=,
    ∵点C是 的中点,
    ∴ ,
    ∴∠AOC=90°,
    ∴AC=OA=2,
    ∵,
    ∴∠CAG=∠CEA,
    ∵∠ACG=∠ECA,
    ∴△ACG∽△ECA,
    ∴,
    ∴CE•CG=AC2=1.

    【点睛】
    本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.
    19、(1);(1)0,1,1.
    【解析】
    (1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果
    (1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可
    【详解】
    解:(1)原式=1﹣1× ,
    =7﹣.
    (1) ,
    解不等式①得:x≤1,
    解不等式②得:x>﹣1,
    ∴不等式组的解集是:﹣1<x≤1.
    故不等式组的整数解是:0,1,1.
    【点睛】
    此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键
    20、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.
    【解析】
    分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;
    (2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
    (3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
    详解:(1)被随机抽取的学生共有14÷28%=50(人);
    (2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,
    活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,
    如图所示:

    (3)参与了4项或5项活动的学生共有×2000=720(人).
    点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
    21、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.
    【解析】
    解:(1)当1≤x≤8时,每平方米的售价应为:
    y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)
    当9≤x≤23时,每平方米的售价应为:
    y=4000+(x﹣8)×50=50x+3600(元/平方米).

    (2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),
    按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),
    按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),
    当W1>W2时,即485760﹣a>475200,
    解得:0<a<10560,
    当W1<W2时,即485760﹣a<475200,
    解得:a>10560,
    ∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.
    【点睛】
    本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
    22、(1)P=t+2;(2)①当0<t≤8时,w=240;当8<t≤12时,w=2t2+12t+16;当12<t≤24时,w=﹣t2+42t+88;②此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
    【解析】
    分析:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;
    (2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;
    ②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.
    详解:(1)设8<t≤24时,P=kt+b,
    将A(8,10)、B(24,26)代入,得:

    解得:,
    ∴P=t+2;
    (2)①当0<t≤8时,w=(2t+8)×=240;
    当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;
    当12<t≤24时,w=(-t+44)(t+2)=-t2+42t+88;
    ②当8<t≤12时,w=2t2+12t+16=2(t+3)2-2,
    ∴8<t≤12时,w随t的增大而增大,
    当2(t+3)2-2=336时,解题t=10或t=-16(舍),
    当t=12时,w取得最大值,最大值为448,
    此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;
    当12<t≤24时,w=-t2+42t+88=-(t-21)2+529,
    当t=12时,w取得最小值448,
    由-(t-21)2+529=513得t=17或t=25,
    ∴当12<t≤17时,448<w≤513,
    此时P=t+2的最小值为14,最大值为19;
    综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
    点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.
    23、50;28;8
    【解析】
    【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;
    (2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.
    【详解】解:(1)50,28,8;
    (2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.
    即扇形统计图中扇形C的圆心角度数为144°;
    (3)1000×=560(人).
    即每月零花钱的数额x元在60≤x

    相关试卷

    2023年云南省昆明市盘龙区中考数学二模试卷:

    这是一份2023年云南省昆明市盘龙区中考数学二模试卷,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年云南省昆明市盘龙区中考数学二模试卷(含解析):

    这是一份2023年云南省昆明市盘龙区中考数学二模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年云南省昆明市盘龙区中考二模数学试卷:

    这是一份2023年云南省昆明市盘龙区中考二模数学试卷,共4页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map