浙江省慈溪育才中学2022年毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330 B.(1﹣10%)x=330
C.(1﹣10%)2x=330 D.(1+10%)x=330
2.下列各式计算正确的是( )
A.a2+2a3=3a5 B.a•a2=a3 C.a6÷a2=a3 D.(a2)3=a5
3.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是( )
A.红花、绿花种植面积一定相等
B.紫花、橙花种植面积一定相等
C.红花、蓝花种植面积一定相等
D.蓝花、黄花种植面积一定相等
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米 B.1.5米 C.2.2米 D.2.4米
5.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为( )
A.y= B.y= C.y= D.y=﹣
6.已知a,b为两个连续的整数,且a< A.7 B.8 C.9 D.10
7.如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为( )
A.10° B.15° C.20° D.25°
8.计算的结果为( )
A.2 B.1 C.0 D.﹣1
9.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
A. B. C. D.
10.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(共7小题,每小题3分,满分21分)
11.若分式方程有增根,则m的值为______.
12.内接于圆,设,圆的半径为,则所对的劣弧长为_____(用含的代数式表示).
13.计算(﹣a2b)3=__.
14.如图AB是直径,C、D、E为圆周上的点,则______.
15.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.
16.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为_____.
17.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.
19.(5分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
20.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
21.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
22.(10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
23.(12分)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)
(1)求抛物线的表达式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标.
24.(14分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.
(1)如图1,若△ABC为直角三角形,求的值;
(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;
(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1. 求的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.
2、B
【解析】
根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解
【详解】
A.a2与2a3不是同类项,故A不正确;
B.a•a2=a3,正确;
C.原式=a4,故C不正确;
D.原式=a6,故D不正确;
故选:B.
【点睛】
此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.
3、C
【解析】
图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.
【详解】
解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.
故选择C.
【点睛】
本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.
4、C
【解析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
【详解】
在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
【点睛】
本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
5、C
【解析】
由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.
【详解】
∵S△AOC=4,
∴k=2S△AOC=8;
∴y=;
故选C.
【点睛】
本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;
6、A
【解析】
∵9<11<16,
∴,
即,
∵a,b为两个连续的整数,且,
∴a=3,b=4,
∴a+b=7,
故选A.
7、B
【解析】
根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答
【详解】
根据题意可知∠AOB=∠ABO=45°,∠DOC=30°
∵BO∥CD
∴∠BOC=∠DCO=90°
∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°
故选B
【点睛】
此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等
8、B
【解析】
按照分式运算规则运算即可,注意结果的化简.
【详解】
解:原式=,故选择B.
【点睛】
本题考查了分式的运算规则.
9、A
【解析】
列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:
【详解】
列表如下:
红
红
红
绿
绿
红
﹣﹣﹣
(红,红)
(红,红)
(绿,红)
(绿,绿)
红
(红,红)
﹣﹣﹣
(红,红)
(绿,红)
(绿,红)
红
(红,红)
(红,红)
﹣﹣﹣
(绿,红)
(绿,红)
绿
(红,绿)
(红,绿)
(红,绿)
﹣﹣﹣
(绿,绿)
绿
(红,绿)
(红,绿)
(红,绿)
(绿,绿)
﹣﹣﹣
∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,
∴,
故选A.
10、C
【解析】
y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.
【详解】
∵y随x的增大而减小,∴一次函数y=kx+b单调递减,
∴k<0,
∵kb<0,
∴b>0,
∴直线经过第二、一、四象限,不经过第三象限,
故选C.
【点睛】
本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、-1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
【详解】
方程两边都乘(x-1),得
x-1(x-1)=-m
∵原方程增根为x=1,
∴把x=1代入整式方程,得m=-1,
故答案为:-1.
【点睛】
本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
12、或
【解析】
分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.
【详解】
解:当0°<x°≤90°时,如图所示:连接OC,
由圆周角定理得,∠BOC=2∠A=2x°,
∴∠DOC=180°-2x°,
∴∠OBC所对的劣弧长=,
当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长= .
故答案为:或.
【点睛】
本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.
13、−a6b3
【解析】
根据积的乘方和幂的乘方法则计算即可.
【详解】
原式=(﹣a2b)3=−a6b3,故答案为−a6b3.
【点睛】
本题考查了积的乘方和幂的乘方,关键是掌握运算法则.
14、90°
【解析】
连接OE,根据圆周角定理即可求出答案.
【详解】
解:连接OE,
根据圆周角定理可知:
∠C=∠AOE,∠D=∠BOE,
则∠C+∠D=(∠AOE+∠BOE)=90°,
故答案为:90°.
【点睛】
本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
15、1
【解析】
解:∵正六边形ABCDEF的边长为3,
∴AB=BC=CD=DE=EF=FA=3,
∴弧BAF的长=3×6﹣3﹣3═12,
∴扇形AFB(阴影部分)的面积=×12×3=1.
故答案为1.
【点睛】
本题考查正多边形和圆;扇形面积的计算.
16、1.
【解析】
先根据二次函数的图象和性质判断出2≤x≤5时的增减性,然后再找最大值即可.
【详解】
对称轴为
∵a=﹣1<0,
∴当x>1时,y随x的增大而减小,
∴当x=2时,二次函数y=﹣(x﹣1)2+2的最大值为1,
故答案为:1.
【点睛】
本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.
17、2.4cm
【解析】
分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP的值,利用sin∠B的值,可求出PD.
详解:由图2可得,AC=3,BC=4,
∴AB=.
当t=5时,如图所示:
,
此时AC+CP=5,故BP=AC+BC-AC-CP=2,
∵sin∠B==,
∴PD=BP·sin∠B=2×==1.2(cm).
故答案是:1.2 cm.
点睛:本题考查了动点问题的函数图象,勾股定理,锐角三角函数等知识,解答本题的关键是根据图形得到AC、BC的长度,此题难度一般.
三、解答题(共7小题,满分69分)
18、(1)见解析;(1)70°.
【解析】
(1)根据全等三角形的判定即可判断△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.
【详解】
证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠1.
又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.
在△AEC和△BED中,
∴△AEC≌△BED(ASA).
(1)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,
∴∠BDE=∠C=70°.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
19、(1);(2).
【解析】
试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如图,过B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
设MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
20、操作平台C离地面的高度为7.6m.
【解析】
分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.
详解:作CE⊥BD于F,AF⊥CE于F,如图2,
易得四边形AHEF为矩形,
∴EF=AH=3.4m,∠HAF=90°,
∴∠CAF=∠CAH-∠HAF=118°-90°=28°,
在Rt△ACF中,∵sin∠CAF=,
∴CF=9sin28°=9×0.47=4.23,
∴CE=CF+EF=4.23+3.4≈7.6(m),
答:操作平台C离地面的高度为7.6m.
点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.
21、(1)10;1;(2);(3)4分钟、9分钟或3分钟.
【解析】
(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;
(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;
(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.
【详解】
(1)(10-100)÷20=10(米/分钟),
b=3÷1×2=1.
故答案为:10;1.
(2)当0≤x≤2时,y=3x;
当x≥2时,y=1+10×3(x-2)=1x-1.
当y=1x-1=10时,x=2.
∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.
(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).
当10x+100-(1x-1)=50时,解得:x=4;
当1x-1-(10x+100)=50时,解得:x=9;
当10-(10x+100)=50时,解得:x=3.
答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.
【点睛】
本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.
22、(1);(2)
【解析】
分析:(1)直接利用概率公式求解;
(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.
详解:(1)甲队最终获胜的概率是;
(2)画树状图为:
共有8种等可能的结果数,其中甲至少胜一局的结果数为7,
所以甲队最终获胜的概率=.
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
23、 (1)y=﹣x2+4x﹣3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
【解析】
(1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;
(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到 •2•|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.
【详解】
解:(1)抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;
(2)设P(t,﹣t2+4t﹣3),
因为S△PAB=1,AB=3﹣1=2,
所以•2•|﹣t2+4t﹣3|=1,
当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);
当﹣t2+4t﹣3=﹣1时,t1=2+,t2=2﹣,此时P点坐标为(2+,﹣1)或(2﹣,﹣1),
所以满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
【点睛】
本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
24、 (1) ;(2) 和;(3)
【解析】
(1)设,,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;
(3)过点作DH⊥轴于点,由::,可得::.设,可得 点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到 ①,将代入抛物线上,可得②,联立①②解方程组,即可解答.
【详解】
解:设,,则是方程的两根,
∴.
∵已知抛物线与轴交于点.
∴
在△中:,在△中:,
∵△为直角三角形,由题意可知∠°,
∴,
即,
∴,
∴,
解得:,
又,
∴.
由可知:,令则,
∴,
∴.
①以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为.
②当以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为
∴符合条件的点坐标为和.
过点作DH⊥轴于点,
∵::,
∴::.
设,则点坐标为,
∴.
∵点在抛物线上,
∴点坐标为,
由(1)知,
∴,
∵∥,
∴△∽△,
∴,
∴,
即①,
又在抛物线上,
∴②,
将②代入①得:,
解得(舍去),
把代入②得:.
【点睛】
本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
浙江省宁波北仑区2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份浙江省宁波北仑区2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
杭州市锦绣育才教育科技集团2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份杭州市锦绣育才教育科技集团2021-2022学年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了下列四个命题,正确的有个等内容,欢迎下载使用。
2022年浙江省平阳县市级名校毕业升学考试模拟卷数学卷含解析: 这是一份2022年浙江省平阳县市级名校毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了答题时请按要求用笔,方程x2+2x﹣3=0的解是等内容,欢迎下载使用。