云南省保山市隆阳区2022年八年级上学期期末考试数学试题及答案
展开八年级上学期期末考试数学试题
一、单选题
1.观察下列平面图形,其中是轴对称图形的有( )
A.1个 B.2个 C.3个 D.4个
2.将下列长度的三条线段首尾顺次相接,能组成三角形的是 ( )
A.1cm,2 cm,3 cm B.2 cm,3 cm,5 cm
C.5cm,6 cm,10 cm D.25cm,12 cm,11 cm
3.六边形的内角和是( )
A.180° B.360° C.540° D.720°
4.如图,已知 ,添加下列条件不能判定 的是( )
A. B.
C. D.
5.若,两点关于轴对称,则的值是( )
A.2 B.-2 C.6 D.-6
6.下列运算正确的是( )
A. B.
C. D.
7.下列从左到右的变形中,是分解因式的是( )
A. B.
C. D.
8.随着市场对新冠疫苗需求越来越大,为满足市场需求,某大型疫苗生产企业更新技术后,加快了生产速度,现在平均每天比更新技术前多生产10万份疫苗,现在生产500万份疫苗所需的时间与更新技术前生产400万份疫苗所需时间相同,设更新技术前每天生产x万份,依据题意得( )
A. B.
C. D.
二、填空题
9.如图,△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积 .
10.如图所示,中,,AD平分,垂足为E,,,则BE的长为 .
11.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10-9米,已知某植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为 米.
12.已知x+ =5,那么x2+ = .
13.对于两个非零代数式,定义一种新的运算:.若,则 .
14.已知等腰三角形的两边长分别为4和6,则它的周长等于
三、解答题
15.先化简,再求值:(3x-y)2+(3x+y)(3x-y) ,其中x=1,y=-2.
16.如图,已知A,B,C,D四点在同一直线上,AM∥CN,BM=DN,∠M=∠N,求证:AC=BD.
17.解下列分式方程:
(1)
(2)
18.如图所示,在平面直角坐标系.各顶点的坐标分别为:,,
(1)在图中作,使和关于x轴对称;
(2)写出点的坐标 ;
(3)求的面积.
19.分解因式:
(1)
(2)
20.如图所示,E、F分别是的边AB、BC上一点,连接EF并延长交AC的延长线于点D.,,,求的度数.
21.如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.
22.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
23.如图1,点E、F分别是等边边、上的动点(端点除外),点E从顶点A向顶点B运动,点F从顶点B向顶点C运动,点E、F同时出发,且它们的运动速度相同,连接、交于点G.
(1)求证:;
(2)当点E、F分别在、边上运动时,变化吗?若变化请说明理由,若不变,求出它的度数;
(3)如图2,若点E、F在运动到终点后继续在射线、上运动,直线、交点为G,则变化吗?若变化请说明理由,若不变,求出它的度数.
答案解析部分
1.【答案】C
2.【答案】C
3.【答案】D
4.【答案】D
5.【答案】D
6.【答案】B
7.【答案】C
8.【答案】B
9.【答案】6
10.【答案】4
11.【答案】4.5×10-5
12.【答案】23
13.【答案】
14.【答案】14或16
15.【答案】解: .
当 时,
原式=
16.【答案】证明:∵AM∥CN,
∴∠MAB=∠NCD,
在△MAB和△NCD中,
,
∴△MAB≌△NCD(AAS),
∴AB=CD,
∴AB-BC=CD-BC,即AC=BD.
17.【答案】(1)解:去分母得:3x=x+2,解得:x=1,经检验x=1是分式方程的解;
(2)解:变形得:去分母得:,解得:x=,经检验x=是分式方程的解.
18.【答案】(1)解:点关于x轴对称点的坐标,
点关于x轴对称点的坐标,
点关于x轴对称点的坐标,
依次连接,和,如图所示:即为所求,
(2)(-1,-4)
(3)解:由图可得:
.
19.【答案】(1)解:=
=
=
(2)解:
=
=
20.【答案】解:∵,,
∴∠BEF=180°-∠B-∠EFB=40°,
∵∠BEF=∠D+∠A,,
∴∠D=∠BEF-∠A=10°.
21.【答案】证明:∵△ABC是等边三角形,BD是中线,
∴∠ABC=∠ACB=60°.
∠DBC=30°(等腰三角形三线合一).
又∵CE=CD,
∴∠CDE=∠CED.
又∵∠BCD=∠CDE+∠CED,
∴∠CDE=∠CED=∠BCD=30°.
∴∠DBC=∠DEC.
∴DB=DE(等角对等边).
22.【答案】(1)解:设该商家购进的第一批衬衫是 件,则第二批衬衫是 件.
由题意可得: ,解得 ,经检验 是原方程的根.
(2)解:设每件衬衫的标价至少是 元.
由(1)得第一批的进价为: (元/件),第二批的进价为: (元)
由题意可得:
解得: ,所以, ,即每件衬衫的标价至少是150元.
23.【答案】(1)证明:∵E、F同时等速运动,
∴AE=BF,
∵△ABC是等边三角形,
∴∠B=∠EAC=60°,AB=AC,
∴△ABF≌△CAE.(SAS)
(2)解:∠FGC不变,∠FGC=60°,理由:
∵△ABF≌△CAE,
∴∠BAF=∠ACE
∵∠FGC=∠GCA+∠CAG=∠BAF+∠CAG=∠BAC=60°;
(3)解:此时∠FGC仍不变,∠FGC=120°,理由:
为等边三角形,
, ,
、同时等速运动,
,
,即,
,
∴∠AEC=∠AFB,
∵∠AGC=∠GCF+∠AFC=∠BCE+∠AEC=∠ABC=60°;
∴∠FGC=120°.
319,云南省保山市隆阳区2023-2024学年九年级上学期期末数学试题: 这是一份319,云南省保山市隆阳区2023-2024学年九年级上学期期末数学试题,共21页。试卷主要包含了考试结束后,请将答题卡交回等内容,欢迎下载使用。
60,云南省保山市隆阳区2023-2024学年九年级上学期期末数学试题: 这是一份60,云南省保山市隆阳区2023-2024学年九年级上学期期末数学试题,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
云南省保山市隆阳区2023-2024学年八年级上册期末数学模拟试题(附答案): 这是一份云南省保山市隆阳区2023-2024学年八年级上册期末数学模拟试题(附答案),共11页。试卷主要包含了考试结束后,请将答题卡交回,下列计算正确的是,若,则的结果是,用三角尺可按下面方法画角平分线,如果实数a,b满足,那么等于等内容,欢迎下载使用。