新疆巴音郭楞州库尔勒市巴州三中学2021-2022学年毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列四个不等式组中,解集在数轴上表示如图所示的是( )
A. B. C. D.
2.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1 B.2 C.3 D.4
3.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是( )
A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0
4.在0,-2,5,,-0.3中,负数的个数是( ).
A.1 B.2 C.3 D.4
5.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是( )
A.①② B.①③ C.①④ D.①③④
6.若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )
A. B. C. D.
7.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为( )
A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
8.如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②1a﹣b=0;③4a+1b+c<0;④若(﹣5,y1),(,y1)是抛物线上两点,则
y1>y1.其中说法正确的是( )
A.①② B.②③ C.①②④ D.②③④
9.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
10.下列实数中是无理数的是( )
A. B.2﹣2 C.5. D.sin45°
11.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )
A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-2
12.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为( )
A.1 B.2 C.3 D.4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.
14.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
15.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.
16.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是 cm.
17.请写出一个比2大且比4小的无理数:________.
18.如果分式的值是0,那么x的值是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.
20.(6分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
证明:∽;
若,求的值;
如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.
21.(6分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
22.(8分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
23.(8分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.
(1)求证:△ABD是等边三角形;
(2)若BD=3,求⊙O的半径.
24.(10分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.
(1)求温馨提示牌和垃圾箱的单价各是多少元?
(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
25.(10分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.
小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:
x/cm
0
1
2
3
4
5
6
y1/cm
0
0.78
1.76
2.85
3.98
4.95
4.47
y2/cm
4
4.69
5.26
5.96
5.94
4.47
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:
①连接BE,则BE的长约为 cm.
②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为 cm.
26.(12分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
(1)∠CAD=______度;
(2)求∠CDF的度数;
(3)用等式表示线段CD和CE之间的数量关系,并证明.
27.(12分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;
(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
此题涉及的知识点是不等式组的表示方法,根据规律可得答案.
【详解】
由解集在数轴上的表示可知,该不等式组为,
故选D.
【点睛】
本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.
2、C
【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
【详解】
解:根据位似性质得出①△ABC与△DEF是位似图形,
②△ABC与△DEF是相似图形,
∵将△ABC的三边缩小的原来的,
∴△ABC与△DEF的周长比为2:1,
故③选项错误,
根据面积比等于相似比的平方,
∴④△ABC与△DEF的面积比为4:1.
故选C.
【点睛】
此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
3、D
【解析】
由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.
【详解】
解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)
∴该函数是开口向上的,a>0
∵y=ax2+bx﹣2过点(1,0),
∴a+b-2=0.
∵a>0,
∴2-b>0.
∵顶点在第三象限,
∴-<0.
∴b>0.
∴2-a>0.
∴0 ∴0 ∴t=a-b-2.
∴﹣4<t<0.
【点睛】
本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.
4、B
【解析】
根据负数的定义判断即可
【详解】
解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.
故选B.
5、C
【解析】
根据倒数的定义,分别进行判断即可得出答案.
【详解】
∵①1和1;1×1=1,故此选项正确;
②-1和1;-1×1=-1,故此选项错误;
③0和0;0×0=0,故此选项错误;
④−和−1,-×(-1)=1,故此选项正确;
∴互为倒数的是:①④,
故选C.
【点睛】
此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
6、D
【解析】
∵一次函数y=ax+b的图象经过第一、二、四象限,
∴a<0,b>0,
∴a+b不一定大于0,故A错误,
a−b<0,故B错误,
ab<0,故C错误,
<0,故D正确.
故选D.
7、A
【解析】
分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可.
【详解】
∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,
∴y1=﹣k2×(-3)=3k2,
y2=﹣k2×(-1)=k2,
∵k≠0,
∴y1>y2.
故答案选A.
【点睛】
本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.
8、C
【解析】
∵二次函数的图象的开口向上,∴a>0。
∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0。
∵二次函数图象的对称轴是直线x=﹣1,∴。∴b=1a>0。
∴abc<0,因此说法①正确。
∵1a﹣b=1a﹣1a=0,因此说法②正确。
∵二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),
∴图象与x轴的另一个交点的坐标是(1,0)。
∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此说法③错误。
∵二次函数图象的对称轴为x=﹣1,
∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
∵当x>﹣1时,y随x的增大而增大,而<3
∴y1<y1,因此说法④正确。
综上所述,说法正确的是①②④。故选C。
9、D
【解析】
试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.
故选D
考点:几何体的形状
10、D
【解析】
A、是有理数,故A选项错误;
B、是有理数,故B选项错误;
C、是有理数,故C选项错误;
D、是无限不循环小数,是无理数,故D选项正确;
故选:D.
11、D
【解析】
把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.
【详解】
解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).
由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.
∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.
12、A
【解析】
试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,
∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB, ∵∠C=90°,∴3∠CAD=90°,
∴∠CAD=30°, ∵AD平分∠CAB,DE⊥AB,CD⊥AC, ∴CD=DE=BD, ∵BC=3, ∴CD=DE=1
考点:线段垂直平分线的性质
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据垂径定理求得BD,然后根据勾股定理求得即可.
【详解】
解:∵OD⊥BC,
∴BD=CD=BC=3,
∵OB=AB=5,
∴在Rt△OBD中,OD==1.
故答案为1.
【点睛】
本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.
14、3或1.2
【解析】
【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.
【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,
∵△PBE∽△DBC,
∴∠PBE=∠DBC,∴点P在BD上,
如图1,当DP=DA=8时,BP=2,
∵△PBE∽△DBC,
∴PE:CD=PB:DB=2:10,
∴PE:6=2:10,
∴PE=1.2;
如图2,当AP=DP时,此时P为BD中点,
∵△PBE∽△DBC,
∴PE:CD=PB:DB=1:2,
∴PE:6=1:2,
∴PE=3;
综上,PE的长为1.2或3,
故答案为:1.2或3.
【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.
15、1≤a≤1
【解析】
根据y的取值范围可以求得相应的x的取值范围.
【详解】
解:∵二次函数y=x1﹣4x+4=(x﹣1)1,
∴该函数的顶点坐标为(1,0),对称轴为:x=﹣,
把y=0代入解析式可得:x=1,
把y=1代入解析式可得:x1=3,x1=1,
所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,
故可得:1≤a≤1,
故答案为:1≤a≤1.
【点睛】
此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
16、2或14
【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
【详解】
①当弦AB和CD在圆心同侧时,如图,
∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF−OE=2cm;
②当弦AB和CD在圆心异侧时,如图,
∵AB=16cm,CD=12cm,
∴AF=8cm,CE=6cm,
∵OA=OC=10cm,
∴OF=6cm,OE=8cm,
∴EF=OF+OE=14cm.
∴AB与CD之间的距离为14cm或2cm.
故答案为:2或14.
17、(或)
【解析】
利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可
【详解】
设无理数为,,所以x的取值在4~16之间都可,故可填
【点睛】
本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键
18、1.
【解析】
根据分式为1的条件得到方程,解方程得到答案.
【详解】
由题意得,x=1,故答案是:1.
【点睛】
本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)证明见解析;(2)
【解析】
试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;
(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.
试题解析:(1)证明:连接OD,CD,
∵BC为⊙O直径,
∴∠BDC=90°,
即CD⊥AB,
∵△ABC是等腰三角形,
∴AD=BD,
∵OB=OC,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∵D点在⊙O上,
∴DE为⊙O的切线;
(2)解:∵∠A=∠B=30°,BC=4,
∴CD=BC=2,BD=BC•cos30°=2,
∴AD=BD=2,AB=2BD=4,
∴S△ABC=AB•CD=×4×2=4,
∵DE⊥AC,
∴DE=AD=×2=,
AE=AD•cos30°=3,
∴S△ODE=OD•DE=×2×=,
S△ADE=AE•DE=××3=,
∵S△BOD=S△BCD=×S△ABC=×4=,
∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.
20、(1)证明见解析;(2);(3).
【解析】
由余角的性质可得,即可证∽;
由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
【详解】
证明:,
又,
又,
∽
∽,
又,,
如图,延长AD与BG的延长线交于H点
,
∽
∴
,由可知≌
,
,
代入上式可得,
∽,
,,
∴
,,
平分
又平分,
,
是等腰直角三角形.
∴.
【点睛】
本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.
21、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
【解析】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
【详解】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
根据题意得:18x+12(20﹣x)=300,
解得:x=10,
则20﹣x=20﹣10=10,
则甲、乙两种型号的产品分别为10万只,10万只;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
根据题意得:13y+8.8(20﹣y)≤239,
解得:y≤15,
根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
当y=15时,W最大,最大值为91万元.
所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.
22、 (1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.
【解析】
(1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;
(2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;
(3)利用二次函数的性质求出w的最大值,以及此时x的值即可.
【详解】
(1)设y=kx+b(k≠0),
根据题意得,
解得:k=﹣2,b=220,
∴y=﹣2x+220(40≤x≤70);
(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;
(3)w=﹣2(x﹣75)2+21,
∵40≤x≤70,
∴x=70时,w有最大值为w=﹣2×25+21=2050元,
∴当销售单价为70元时,该公司日获利最大,为2050元.
【点睛】
此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.
23、(1)详见解析;(2).
【解析】
(1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.设EB=x,则ED=2x,根据勾股定理列方程求解即可.
【详解】
解:(1)∵∠BCD=120°,CA平分∠BCD,
∴∠ACD=∠ACB=60°,
由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,
∴△ABD是等边三角形;
(2)连接OB、OD,作OH⊥BD于H,
则DH=BD=,
∠BOD=2∠BAD=120°,
∴∠DOH=60°,
在Rt△ODH中,OD==,
∴⊙O的半径为.
【点睛】
本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.
24、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析
【解析】
(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;
(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.
【详解】
(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,
根据题意得,2x+3×3x=550,
∴x=50,
经检验,符合题意,
∴3x=150元,
即:温馨提示牌和垃圾箱的单价各是50元和150元;
(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,
根据题意得,意,
∴
∵y为正整数,
∴y为50,51,52,共3中方案;
有三种方案:①温馨提示牌50个,垃圾箱50个,
②温馨提示牌51个,垃圾箱49个,
③温馨提示牌52个,垃圾箱48个,
设总费用为w元
W=50y+150(100﹣y)=﹣100y+15000,
∵k=-100,∴w随y的增大而减小
∴当y=52时,所需资金最少,最少是9800元.
【点睛】
此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.
25、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.
【解析】
(1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD=,得出AD=AB+BD=4.9367(cm),再由勾股定理求出AC即可;
(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;
(3)①∵BC=6时,CD=AC=4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BE=BC=6即可;
②分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6;
当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.
【详解】
(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:
∵CD⊥AB,
∴(cm),
∴AD=AB+BD=4+0.9367=4.9367(cm),
∴(cm);
补充完整如下表:
(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:
(3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,
∴BE=BC=6cm,
故答案为:6;
②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:
当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;
当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;
综上所述:BC的长度约为6cm或4.1cm;
故答案为:6或4.1.
【点睛】
本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.
26、(1)45;(2)90°;(3)见解析.
【解析】
(1)根据等腰三角形三线合一可得结论;
(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
【详解】
(1)解:∵AB=AC,M是BC的中点,
∴AM⊥BC,∠BAD=∠CAD,
∵∠BAC=90°,
∴∠CAD=45°,
故答案为:45
(2)解:如图,连接DB.
∵AB=AC,∠BAC=90°,M是BC的中点,
∴∠BAD=∠CAD=45°.
∴△BAD≌△CAD.
∴∠DBA=∠DCA,BD=CD.
∵CD=DF,
∴BD=DF.
∴∠DBA=∠DFB=∠DCA.
∵∠DFB+∠DFA=180°,
∴∠DCA+∠DFA=180°.
∴∠BAC+∠CDF=180°.
∴∠CDF=90°.
(3).
证明:∵∠EAD=90°,
∴∠EAF=∠DAF=45°.
∵AD=AE,
∴△EAF≌△DAF.
∴DF=EF.
由②可知,.
∴.
【点睛】
此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
27、(1);(2)
【解析】
(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;
(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.
【详解】
解:(1)画树状图得:
共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,
所以都选择A通道通过的概率为,
故答案为:;
(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,
∴至少有两辆汽车选择B通道通过的概率为.
【点睛】
考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.
2023-2024学年新疆巴音郭楞州库尔勒市巴州三中学数学九年级第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年新疆巴音郭楞州库尔勒市巴州三中学数学九年级第一学期期末质量检测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程中,是一元二次方程的是,下列说法正确的是等内容,欢迎下载使用。
新疆巴音郭楞州库尔勒市巴州三中学2022-2023学年数学七下期末统考试题含答案: 这是一份新疆巴音郭楞州库尔勒市巴州三中学2022-2023学年数学七下期末统考试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,菱形和矩形一定都具有的性质是,对于数据等内容,欢迎下载使用。
新疆昌吉州奇台县重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份新疆昌吉州奇台县重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了的绝对值是等内容,欢迎下载使用。