终身会员
搜索
    上传资料 赚现金
    22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)
    立即下载
    加入资料篮
    22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)01
    22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)02
    22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)03
    22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)04
    22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)05
    22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)06
    22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)07
    22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)08
    还剩36页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)八年级下册22.3 特殊的平行四边形备课课件ppt

    展开
    这是一份初中数学沪教版 (五四制)八年级下册22.3 特殊的平行四边形备课课件ppt,共44页。PPT课件主要包含了有一个角是直角,平行四边形,总结猜想,菱形定义,符号语言,AC⊥BD,菱形的特殊性质,平行四边形的性质,你有什么发现,菱形的性质等内容,欢迎下载使用。

    1.了解菱形的概念及其与平行四边形的关系.2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关计算或证明问题.(难点)
    当把衣帽架拉动时,从它的形状变化,你能看出什么?
    前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩形.
    猜想: 如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?
    平行四边形不一定是菱形.
    ∵四边形ABCD是平行四边形,AB=BC
    有一组邻边相等的平行四边形叫做菱形。
    ∴四边形ABCD是菱形
    如何利用折纸、裁剪的方法,既快又准确的剪出一个菱形的纸片?
    在自己剪出的菱形上画出两条折痕,折叠手中的图形(如图),并回答以下问题:
    问题1 菱形是轴对称图形吗?如果是,指出它的对称轴. 是,两条对角线所在直线都是它的对称轴.问题2 根据上面折叠过程,猜想菱形的四边在数量上 有什么关系?菱形的两对角线有什么关系?
    猜想1 菱形的四条边都相等.
    猜想2 菱形的两条对角线互相垂直,并且每一条对 角线平分一组对角.
    已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与BD相交于点O. 求证:(1)AB = BC = CD =AD; (2)AC⊥BD; ∠DAC=∠BAC,∠DCA=∠BCA, ∠ADB=∠CDB,∠ABD=∠CBD.
    证明:(1)∵四边形ABCD是平行四边形, ∴AB = CD,AD = BC(平行四边形的对边相等). 又∵AB=AD, ∴AB = BC = CD =AD.
    (2)∵AB = AD, ∴△ABD是等腰三角形. 又∵四边形ABCD是平行四边形, ∴OB = OD (平行四边形的对角线互相平分). 在等腰三角形ABD中, ∵OB = OD, ∴AO⊥BD,AO平分∠BAD, 即AC⊥BD,∠DAC=∠BAC. 同理可证∠DCA=∠BCA, ∠ADB=∠CDB,∠ABD=∠CBD.
    ∵四边形ABCD是菱形∴          
    1、菱形的四条边相等.
    AB=BC=CD=AD
    2、菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
    ∵四边形ABCD是菱形∴                                   
    AC平分∠DAB和∠DCB,
    BD平分∠ADC和∠ABC。
    菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.
    对称性:是轴对称图形.边:四条边都相等.对角线:互相垂直,且每条对角线平分一组对角.
    角:对角相等.边:对边平行且相等.对角线:相互平分.
    例1 如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.
    解:∵四边形ABCD是菱形,∴AC⊥BD,AO= AC,BO= BD.∵AC=6cm,BD=12cm,∴AO=3cm,BO=6cm.在Rt△ABO中,由勾股定理得∴菱形的周长=4AB=4×3 =12 (cm).
    例2 如图,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.
    证明:连接AC. ∵四边形ABCD是菱形, ∴AC平分∠BAD, 即∠BAC=∠DAC. ∵CE⊥AB,CF⊥AD, ∴∠AEC=∠AFC=90°. 又∵AC=AC, ∴△ACE≌△ACF. ∴AE=AF.
    例3 如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.
    证明:∵四边形ABCD为菱形,∴AD∥BC,AD=BA, ∠ABC=∠ADC=2∠ADB ,∴∠DAE=∠AEB,∵AB=AE,∴∠ABC=∠AEB, ∴∠ABC=∠DAE, ∵∠DAE=2∠BAE,∴∠BAE=∠ADB. 又∵AD=BA ,∴△AOD≌△BEA ,∴AO=BE .
    例4 如图,四边形ABCD是菱形,对角线AC,BD交于点O,试用对角线表示出菱形ABCD的面积.
    解:∵四边形ABCD是菱形,∴AC⊥BD,∴S菱形ABCD=S△ABC +S△ADC= AC·BO+ AC·DO= AC(BO+DO)= AC·BD.
    菱形的面积 = 底×高 = 对角线乘积的一半
    例5 如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(结果分别精确到0.01m和0.1m2 ).
    解:∵花坛ABCD是菱形,
    如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度; (2)菱形的面积.
    解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°.∵∠ABC与∠BAD的度数比为1:2,∴∠ABC= ×180°=60°,∴∠ABO= ×∠ABC=30°,△ABC是等边三角形.∵菱形ABCD的周长是8cm.∴AB=2cm,
    ∴OA= AB=1cm,AC=AB=2cm, ∴BD=2OB= cm;(2)S菱形ABCD= AC•BD = ×2× = (cm2).
    菱形中的相关计算通常转化为直角三角形或等腰三角形,当菱形中有一个角是60°时,菱形被分为以60°为顶角的两个等边三角形.
    1.周长=边长的四倍2.面积=底×高=两条对角线乘积的一半
    1.两组对边平行且相等;2.四条边相等
    两组对角分别相等,邻角互补邻角互补
    1.两条对角线互相垂直平分;2.每一条对角线平分一组对角
     1.经历菱形判定定理的探究过程,掌握菱形的判 定定理.(重点) 2.会用这些菱形的判定方法进行有关的证明和计算. (难点)
    1.菱形的定义是什么?
    有一组邻边相等的平行四边形叫做菱形.
    2.你能说出菱形的性质有哪些吗?
    菱形的两组对边平行
    菱形的两组对角分别相等
    菱形的两条对角线互相垂直平分,每一条对角线平分一组对角。
    怎样判定一个四边形是否为菱形?
    根据菱形的定义去判定.
    有一组邻边相等的平行四边形是菱形.
    猜想1:对角线互相垂直的平行四边形是菱形.
    猜想2:四边相等的四边形是菱形.
    除了根据定义判定,还有其它判定菱形的方法吗?
    对角线互相垂直的平行四边形是菱形.
    证明:∵四边形ABCD是平行四边形 ∴AO=OC ∵AC ⊥ BD ∴∠AOB=∠COB=90° 又∵BO是公共边 ∴△AOB≌△COB ∴AB=BC
    对角线互相垂直平分的四边形是菱形.
    猜想2:四边都相等的四边形是菱形.
    四边都相等的四边形是菱形.
    证明:在四边形ABCD中 ∵AB=CD,BC=AD ∴四边形ABCD是平行四边形 ∵AB=BC ∴平行四边形ABCD是菱形
    有一组邻边相等的平行四边形叫做菱形
    对角线互相垂直的平行四边形是菱形
    有四条边相等的四边形是菱形。
    又∵四边形ABCD是平行四边形,
    ∴ OA=4,OB=3,AB=5,
    ∴ AB2=OA2+OB2,
    ∴△AOB是直角三角形,
    ∴四边形ABCD是菱形.
    ∵ AC=8,BD=6
    例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.
    证明: ∵四边形ABCD是矩形, ∴AE∥FC,∴∠1=∠2.∵EF垂直平分AC,∴AO = OC . 又∠AOE =∠COF,∴△AOE≌△COF,∴EO =FO.∴四边形AFCE是平行四边形.又∵EF⊥AC ∴ 四边形AFCE是菱形.
    证明: ∵ ∠1= ∠2, 又∵AE=AC,AD=AD, ∴ △ACD≌ △AED (SAS). 同理△ACF≌△AEF(SAS) . ∴CD=ED, CF=EF. 又∵EF=ED,∴CD=ED=CF=EF, ∴四边形ABCD是菱形.
    例3 如图,在△ABC中, AD是角平分线,点E、F分别在 AB、 AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形.
    例4 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
    证明:由平移变换的性质得CF=AD=10cm,DF=AC.∵∠B=90°,AB=6cm,BC=8cm,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.
    四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.
    证明:连接AC、BD.
    ∵四边形ABCD是矩形,
    ∵点E、F、G、H为各边中点,
    ∴EF=FG=GH=HE,
    ∴四边形EFGH是菱形.
    例5 如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.
    【变式题】 如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?
    解:四边形EFGH是菱形.
    顺次连接对角线相等的四边形的各边中点,得到四边形是菱形.
    理由如下:连接AC、BD
    拓展1 如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?
    ∴四边形EFGH是平行四边形.
    拓展2 如图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?
    四边形EFGH是矩形.
    例6 如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;
    (1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;
    (2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为 ,∴菱形的面积为 .
    (2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
    判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.
    1、□ABCD的对角线AC与BD相交于点O, (1)若AB=AD,则□ABCD是 形; (2)若AC=BD,则□ABCD是 形; (3)若∠ABC是直角,则□ABCD是 形; (4)若∠BAO=∠DAO,则□ABCD是 形。
    2.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的 四边形是菱形;(4)两条邻边相等,且一条对角线平分一组 对角的四边形是菱形.
    3.一边长为5cm平行四边形的两条对角线的长分别为 24cm和26cm,那么平行四边形的面积是 .
    4.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是(  ) A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60°
    解析:∵将△ABC沿BC方向平移得到△DCE,∴AC∥DE,AC=DE,∴四边形ABED为平行四边形.当AC=BC时,平行四边形ACED是菱形.故选B.
    5.如图,在平行四边形ABCD中,AC平分∠DAB,AB=3,求平行四边形ABCD的周长.
    解:∵四边形ABCD为平行四边形,∴AD∥BC,AB∥CD,∴∠DAC=∠ACB,∠BAC=∠ACD,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠DAC=∠ACD,∴AD=DC,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×3=12.
    6.如图,矩形ABCD的对角线相交于点O,BE∥AC,AE ∥BD.求证:四边形OAEB是菱形.
    证明:∵DE∥AC,CE∥BD,∴四边形OAEB是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴四边形OCED是菱形.
    相关课件

    沪教版 (五四制)八年级下册23.3 事件的概率备课课件ppt: 这是一份沪教版 (五四制)八年级下册23.3 事件的概率备课课件ppt,共34页。PPT课件主要包含了事件的频率与概率,试一试,一起做一做,分析下面两个试验,概念辨析,归纳总结,第一次,第二次等内容,欢迎下载使用。

    初中数学沪教版 (五四制)八年级下册第二十二章 四边形第三节 梯形22.5 等腰梯形备课课件ppt: 这是一份初中数学沪教版 (五四制)八年级下册第二十二章 四边形第三节 梯形22.5 等腰梯形备课课件ppt,共27页。PPT课件主要包含了性质定理1,关键分割,两个全等的直角三角形,一个矩形,一个平行四边形,一个等腰三角形,再来验证你的发现,口答小练习,x+3x180°,70°等内容,欢迎下载使用。

    初中数学22.4 梯形备课ppt课件: 这是一份初中数学22.4 梯形备课ppt课件,共25页。PPT课件主要包含了等腰梯形,两腰相等,梯形有关定义,梯形可由三角形截得,课堂小结,各类四边形之间的关系等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        22.3特殊的平行四边形(2)菱形的性质与判定(课件)-八年级数学下册同步备课系列(沪教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map