五年级下册数学-典型应用题 工程问题 优质课件
展开工程问题是研究工作量、工作效率和工作时间三者之间关系的问题。这三者之间的关系是: 工作效率×工作时间=工作量工作量÷工作时间=工作效率工作量÷工作效率=工作时间根据上面的数量关系,只要知道三者中的任意两种量,就可求出第三种量。
由于工作量的已知情况不同,工程问题可分为整数工程问题和分数工程问题两类。在整数工程问题中,工作量是已知的具体数量。解答这类问题时,只要按照上面介绍的数量关系计算就可解题,计算过程中一般不涉及分率。在分数工程问题中,工作量是未知数量。解这类题时,也要根据上面介绍的数量关系计算,但在计算过程中要涉及到分率。
一、工作总量是具体数量的工程问题例1 建筑工地需要1200吨水泥,用甲车队运需要15天,用乙车队运需要10天。两队合运需要多少天?(适于四年级程度)
甲车队每天运的吨数:(甲车队工作效率)1200÷15=80(吨)乙车队每天运的吨数:(乙车队工作效率)1200÷10=120(吨)两个车队一天共运的吨数:80+120=200(吨)两个车队合运需用的天数:1200÷200=6(天)综合算式:1200÷(1200÷15+1200÷10)=1200÷(80+120)=1200÷200=6(天)答略。
例2 生产350个零件,李师傅14小时可以完成。如果李师傅和他的徒弟小王合作,则10小时可以完成。如果小王单独做这批零件,需多少小时?(适于四年级程度)
解:题中工作总量是具体的数量,李师傅完成工作总量的时间也是具体的。李师傅1小时可完成:350÷14=25(个)由“如果李师傅和他的徒弟小王合作,则10小时可以完成”可知,李师傅和徒弟小王每小时完成:350÷10=35(个)小王单独工作一小时可完成:35-25=10(个)小王单独做这批零件需要:350÷10=35(小时)综合算式:350÷(350÷10-350÷14)=350÷(35-25=350÷10=35(小时)答略。
二、工作总量不是具体数量的工程问题
工程问题方法总结一:基本数量关系: 工效×时间=工作总量 二:基本特点: 设工作总量为“1”,工效=1/时间 三:基本方法: 算术方法、比例方法、方程方法。 四:基本思想: 分做合想、合做分想。
例1. 一件工作,由A做20天完成,B做15天完成。(1)两队合做5天可以完成工程的几分之几?(2)两队合做6天,还剩下工程的几分之几?(3)两队合做几天完成?
例2.一工作,甲做9天可以完成,乙做6天可以完成,现在甲、乙做了3天,余下的工作由乙继续完成,乙需要做几天可以完成全部工作?
一件工作,甲做9天可以完成,乙做6天可以完成。现在甲先做了3天,余下的工作由乙继续完成,乙需要做几天可以完成全部工作?
一项工程,甲单独完成需12天,乙单独完成需9天,如果甲先做10天后,乙接着做,问乙还要多少天完成?
一项工程,甲独做需15天,乙独做需12天,现在甲乙合作若干天后,乙再接着做3天,就完成了全部工程,问甲乙合作了多少天?
一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?
某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成。现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?
一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天。从开始到完成共用了16天.问乙队休息了多少天?
小升初数学第27天典型应用题课件278: 这是一份小升初数学第27天典型应用题课件278,共14页。
五年级下册数学课件-典型应用题 按比例分配 优质课件: 这是一份五年级下册数学课件-典型应用题 按比例分配 优质课件,共15页。PPT课件主要包含了按比例分配问题等内容,欢迎下载使用。
五年级上册数学课件-典型应用题 最值问题 优质课件: 这是一份五年级上册数学课件-典型应用题 最值问题 优质课件,共14页。PPT课件主要包含了最值问题,两个数乘积最大,各自十位上的数字最大,两个数和一定,两个数越接近,关键点等内容,欢迎下载使用。