山西省娄烦县2022-2023学年八年级(上)数学期末模拟测试(解析版)
展开这是一份山西省娄烦县2022-2023学年八年级(上)数学期末模拟测试(解析版),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
娄烦县2022-2023学年八年级(上)数学期末模拟测试
一、选择题(本题共10个小题,每小题3分,共 30分。下列各题,每小题只有一个选项符合题意。)
1. “新冠病毒”肆虐,全国上下齐心协力、众志成城,坚决打赢“新冠肺炎”阻击战,下列防疫的图标中是轴对称图形的是( )
A. B. C. D.
2. 肥皂泡的泡壁厚度大约是,用科学记数法表示为( ).
A. 7×10-4 B. 7×10-5 C. 0.7×10-4 D. 0.7×10-5
3. 下列计算正确的是( )
A. x•x3=x4 B. x4+x4=x8 C. (x2)3=x5 D. x﹣1=﹣x
4. 若分式有意义,则x应该满足的条件是( )
A. B. C. D.
5. 化简÷(1-)的结果是( )
A. B. C. x+1 D. x-1
6. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )
A. 7cm B. 3cm C. 9cm D. 5cm
7. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84° B. 60° C. 48° D. 43°
8. 如图,四边形ABCD中,,,连接BD,BD⊥CD,垂足是D且,点P是边BC上的一动点,则DP的最小值是( )
A. 1 B. 2 C. 3 D. 4
9. 已知甲、乙、丙均为x的一次多项式,且其一次项系数皆为正整数,若甲与乙相乘得,乙与丙相乘得,则甲、丙之积与乙的差是( )
A. B.
C. D.
10. 如图,在中,,,点,分别是,上的动点,将沿直线翻折,点的对点恰好落在边上,若是等腰三角形,那么的度数为( )
A. 或 B. 或
C. ,或 D. ,或
二.填空题(共5题,总计 15分)
11. 是完全平方式,则m=__________.
12. 分解因式:(1)________________;
(2)________________.
13. 如图,小明家的衣柜上镶有两块形状和大小完全相同的三角形玻璃装饰物,其中一块被打碎了,妈妈想让小明到玻璃店配一块回来,请把小明该测量△ABC的边或角写下来_________________.(写出一种即可)
14. Rt△ABC中,AC=BC,∠ACB=90°,如图,BO、CO分别平分∠ABC、∠ACB,EO∥AB,FO∥AC,若S△ABC=32,则△OEF的周长为________.
15. 图,在△ABC中,AB AC,D为BC的中点,有下列结论:①△ABD ≌ △ACD;②∠B∠C;③AD平分∠BAC;④AD⊥BC;⑤△ABC的对称轴是线段AD. 其中正确的结论有__________个.
三.解答题(共8题,总计75分)
16. 计算(1)
(2)
(3)
(4)
17. 先化简,再求值:,其中.
18. 在平面直角坐标系中,△ABC三个顶点的坐标为:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1 ;B1, ;C1 ;
(2)△ABC的面积为 ;
(3)在y轴上画出点P,使PB+PC最小.
19. 将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.
(1)求证:△BCE≌△B1CF.
(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.
20. 如图,在△ABC中,射线AM平分∠BAC.
(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG;
(2)在(1)条件下,∠BAC和∠BGC有何数量关系?并证明你的结论.
21. 已知,其中,
(1)判断A与B的大小;
(2)阅读下面对B分解因式的方法:.请解决下列两个问题:
①仿照上述方法分解因式:;
②指出A与C哪个大,并说明理由.
22. 在今年新冠肺炎防疫工作中,某公司购买了、两种不同型号口罩,已知型口罩的单价比型口罩的单价多1.5元,且用8000元购买型口罩的数量与用5000元购买型口罩的数量相同.
(1)、两种型号口罩的单价各是多少元?
(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买型口罩数量是型口罩数量的2倍,若总费用不超过3800元,则增加购买型口罩的数量最多是多少个?
23. 阅读以下材料:
指数与对数之间有密切的联系,它们之间可以互化.对数的定义:一般地,若(且),那么x叫做以a为底N的对数,记作,比如指数式可以转化为对数式,对数式,可以转化为指数式.
我们根据对数的定义可得到对数的一个性质:
(,,,);
设,,则,,
,由对数定义得
又,
请解决以下问题:
(1)将指数式转化为对数式______;
(2)求证:(,,,);
(3)拓展运用:计算______.
娄烦县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:A选项,图标不符合轴对称图形的定义,故不符合题意;
B选项,图标不符合轴对称图形的定义,故不符合题意;
C选项,图标符合轴对称图形的定义,故符合题意;
D选项,图标不符合轴对称图形的定义,故不符合题意;
故选:C.
2.【答案】:B
【解析】:解:0.00007=7×10-5.
故选B.
2.【答案】:A
【解析】:解:A. x•x3=x4,正确;
B. x4+x4=2x4,原式错误;
C.(x2)3=x6,原式错误;
D. x-1=,原式错误;
故选:A.
4.【答案】:B
【解析】:解:由题意,得x+1≠0,解得:x≠-1,
故选:B.
5.【答案】:A
【解析】:解:原式= ,
故选A.
6.【答案】:B
【解析】:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;
当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.
故底边长:3cm.
故选:B.
7.【答案】:D
【解析】:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
8.【答案】:C
【解析】:解:∵BD⊥CD,∠A=90°
∴∠ABD+∠ADB=90°,
∠CBD+∠C=90°,
∵∠ADB=∠C ,
∴∠ABD=∠CBD,
由垂线段最短得,DP⊥BC时DP最小,
此时,DP=AD=3.
故选:C.
9.【答案】:A
【解析】:A
∵,
∵,
又∵甲与乙相乘得:,乙与丙相乘得:,
∴甲为,乙为,丙为,
∴甲、丙之积与乙的差是:
,
,
,
故选:A
10.【答案】:D
【解析】:,,
,
分三种情况讨论:
①当时,如图:
,
;
②当时,如图:
,
;
③当时,如图:
,
;
综上所述,为或或,
故选:D.
二. 填空题
11.【答案】:
【解析】:解:∵,
∴由题意可知,原式,即.
故答案为:.
12.【答案】:①. ②.
【解析】:(1)原式,
,
故答案为:;
(2)原式,
,
,
故答案为:.
13.【答案】:a,b,c
【解析】:解:分别测量原来三角形玻璃装饰物的三条边的长度,可以画到一样的三角形玻璃装饰物.
故答案为:a,b,c
14.【答案】: 8
【解析】:解:,,,
,
,
平分
,
则同理可得,
的周长.
故答案为:8.
15.【答案】: 4
【解析】:解:∵AB=AC,BD=CD,
∴∠B=∠C,∠BAD=∠CAD,AD⊥BC,
在△ABD和△ACD中
∴△ABD≌△ACD,
△ABC的对称轴是线段AD所在的直线.
∴①②③④都符合题意,⑤不符合题意;
故答案为4.
三.解答题
16【答案】:
(1) ;(2) ;
(3)100;(4).
【解析】:
解:(1)原式=1+4-
=;
(2)原式=a6-a6-8a6
=-8a6;
(3)原式=(10+)×(10-)+32017×()2017×()2
=100-+1×
=100;
(4)原式=[a-(b-2)][a+(b-2)]
=a2-(b-2)2
= a2-b2+4b-4.
17【答案】:
,
【解析】:
原式
当时,
18【答案】:
(1)(3,2)、(4,﹣3)、(1,﹣1);(2)6.5;(3)见解析.
【解析】:
(1)根据点关于y轴对称的性质得:;
(2)如图可知,
则;
(3)由题意可得y轴是线段的垂直平分线,则
因此
由三角形的三边关系得
故当三点共线时,最小,且最小值为
连接,与y轴的交点即为所求点P(如图所示).
【画龙点睛】本题考查了平面直角坐标系中点坐标的对称变换、三角形的三边关系,理解掌握点的坐标的对称变换是解题关键.
19【答案】:
(1)证明见试题解析;(2)垂直.理由见试题解析
【解析】:
证明:两块大小相同的含30°角的直角三角板,
所以∠BCA=∠B1CA1 ,BC=B1C ,∠B=∠B1
∵∠BCA-∠A1CA=∠B1CA1-∠A1CA
即∠BCE=∠B1CF
∵,
∴△BCE≌△B1CF(ASA);
(2)解:AB与A1B1垂直,理由如下:
旋转角等于30°,即∠ECF=30°,
所以∠FCB1=60°,∠BCB1=150°,
又∠B=∠B1=60°,
根据四边形的内角和可知∠BOB1的度数为360°-60°-60°-150°=90°,
所以AB与A1B1垂直.
20【答案】:
(1)详见解析;(2)∠BAC+∠BGC=180°,证明详见解析.
【解析】:
解:(1)线段BC的中垂线EG如图所示:
(2)结论:∠BAC+∠BGC=180°.
理由:在AB上截取AD=AC,连接DG.
∵AM平分∠BAC,
∴∠DAG=∠CAG,
在△DAG和△CAG中
∵
∴△DAG≌△CAG(SAS),
∴∠ADG=∠ACG,DG=CG,
∵G在BC的垂直平分线上,
∴BG=CG,
∴BG=DG,
∴∠ABG=∠BDG,
∵∠BDG+∠ADG=180°,
∴∠ABG+∠ACG=180°,
∵∠ABG+∠BGC+∠ACG+∠BAC=360°,
∴∠BAC+∠BGC=180°.
21【答案】:
(1);
(2)①②当 ,,当时,,当时,,理由见解析.
【解析】:
(1)∵
,
∴.
(2)①
,
②
,
∵,
∴,
从而当时,,
当时,,
当时,.
22【答案】:
(1)型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)增加购买型口罩的数量最多是422个
【解析】:
(1)设型口罩单价为元/个,则型口罩单价为元/个,
根据题意,得:,解方程,得,
经检验:是原方程的根,且符合题意,∴(元),
答:型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)设增加购买型口罩的数量是个,则增加购买型口罩数量是2个,
根据题意,得:,
解不等式,得:,
∵为正整数,∴正整数的最大值为422,
答:增加购买型口罩的数量最多是422个.
【画龙点睛】本题考查了分式方程和不等式的应用,属于常考题型,正确理解题意、找准相等与不等关系是解题的关键.
23【答案】:
(1)
(2)见解析
(3)2
【解析】:
【小问1详解】
解:(或);
故答案为:(或);
【小问2详解】
解:设,,则,,
∴,由对数的定义得,
又∵,
∴;
【小问3详解】
解:
.
相关试卷
这是一份山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份山西省浑源县2022-2023学年八年级(上)数学期末模拟测试(解析版),共17页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份山西省安泽县2022-2023学年八年级(上)数学期末模拟测试(解析版),共17页。试卷主要包含了选择题等内容,欢迎下载使用。