|试卷下载
搜索
    上传资料 赚现金
    浙江省丽水市莲都区重点达标名校2022年中考猜题数学试卷含解析
    立即下载
    加入资料篮
    浙江省丽水市莲都区重点达标名校2022年中考猜题数学试卷含解析01
    浙江省丽水市莲都区重点达标名校2022年中考猜题数学试卷含解析02
    浙江省丽水市莲都区重点达标名校2022年中考猜题数学试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省丽水市莲都区重点达标名校2022年中考猜题数学试卷含解析

    展开
    这是一份浙江省丽水市莲都区重点达标名校2022年中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,太原市出租车的收费标准是,如图,将一正方形纸片沿图等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
    A. B. C. D.
    2.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )

    A. B. C. D.12
    3.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为(  )

    A.正比例函数y=kx(k为常数,k≠0,x>0)
    B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)
    C.反比例函数y=(k为常数,k≠0,x>0)
    D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)
    4.不等式组 的整数解有(  )
    A.0个 B.5个 C.6个 D.无数个
    5.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是(  )
    A.11 B.8 C.7 D.5
    6.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是(  )

    A. B. C. D.
    7.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )

    A.50° B.20° C.60° D.70°
    8.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是(  )
    A. B. C. D.
    10.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
    12.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1=  ▲  .
    13.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.

    14.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.

    15.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.

    16.计算×3结果等于_____.
    17.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,
    (1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);
    (2)连接EF,若BD=4,求EF的长.

    19.(5分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
    (1)求证:四边形ABCD是菱形;
    (2)若∠EAF=60°,CF=2,求AF的长.

    20.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.
    (1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;
    (2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
    21.(10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
    22.(10分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.

    23.(12分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.

    (1)求树DE的高度;
    (2)求食堂MN的高度.
    24.(14分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,
    (1)求证:△ABE≌△DCF;
    (2)试证明:以A、B、D、C为顶点的四边形是平行四边形.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据“左加右减、上加下减”的原则,
    将抛物线向左平移1个单位所得直线解析式为:;
    再向下平移3个单位为:.故选D.
    2、C
    【解析】
    设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
    【详解】
    ∵四边形OCBA是矩形,
    ∴AB=OC,OA=BC,
    设B点的坐标为(a,b),
    ∵BD=3AD,
    ∴D(,b),
    ∵点D,E在反比例函数的图象上,
    ∴=k,
    ∴E(a, ),
    ∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
    ∴k=,
    故选:C
    【点睛】
    考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
    3、C
    【解析】
    延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.
    【详解】
    延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,

    ∵AE,BF为圆O的切线,
    ∴OE⊥AE,OF⊥FB,
    ∴∠AEO=∠BFO=90°,
    在Rt△AEO和Rt△BFO中,
    ∵,
    ∴Rt△AEO≌Rt△BFO(HL),
    ∴∠A=∠B,
    ∴△QAB为等腰三角形,
    又∵O为AB的中点,即AO=BO,
    ∴QO⊥AB,
    ∴∠QOB=∠QFO=90°,
    又∵∠OQF=∠BQO,
    ∴△QOF∽△QBO,
    ∴∠B=∠QOF,
    同理可以得到∠A=∠QOE,
    ∴∠QOF=∠QOE,
    根据切线长定理得:OD平分∠EOG,OC平分∠GOF,
    ∴∠DOC=∠EOF=∠A=∠B,
    又∵∠GCO=∠FCO,
    ∴△DOC∽△OBC,
    同理可以得到△DOC∽△DAO,
    ∴△DAO∽△OBC,
    ∴,
    ∴AD•BC=AO•OB=AB2,即xy=AB2为定值,
    设k=AB2,得到y=,
    则y与x满足的函数关系式为反比例函数y=(k为常数,k≠0,x>0).
    故选C.
    【点睛】
    本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.
    4、B
    【解析】
    先解每一个不等式,求出不等式组的解集,再求整数解即可.
    【详解】
    解不等式x+3>0,得x>﹣3,
    解不等式﹣x≥﹣2,得x≤2,
    ∴不等式组的解集为﹣3<x≤2,
    ∴整数解有:﹣2,﹣1,0,1,2共5个,
    故选B.
    【点睛】
    本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.
    5、B
    【解析】
    根据等量关系,即(经过的路程﹣3)×1.6+起步价2元≤1.列出不等式求解.
    【详解】
    可设此人从甲地到乙地经过的路程为xkm,
    根据题意可知:(x﹣3)×1.6+2≤1,
    解得:x≤2.
    即此人从甲地到乙地经过的路程最多为2km.
    故选B.
    【点睛】
    考查了一元一次方程的应用.关键是掌握正确理解题意,找出题目中的数量关系.
    6、D
    【解析】
    本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.
    【详解】
    要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.
    【点睛】
    本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.
    7、D
    【解析】
    题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.
    【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    8、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A.不是轴对称图形,也不是中心对称图形.故错误;
    B.不是轴对称图形,也不是中心对称图形.故错误;
    C.是轴对称图形,也是中心对称图形.故正确;
    D.不是轴对称图形,是中心对称图形.故错误.
    故选C.
    【点睛】
    掌握好中心对称图形与轴对称图形的概念.
    轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;
    中心对称图形是要寻找对称中心,旋转180°后与原图重合.
    9、A
    【解析】
    首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
    【详解】
    画树状图如下:

    由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
    ∴两次都摸到黄球的概率为,
    故选A.
    【点睛】
    此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
    10、B
    【解析】
    如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
    NE的长,EF的长,则可求sin∠AFG的值.
    【详解】
    解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.

    ∵四边形ABCD是菱形,AB=4,∠DAB=60°,
    ∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
    ∴∠HDE=∠DAB=60°,
    ∵点E是CD中点
    ∴DE=CD=1
    在Rt△DEH中,DE=1,∠HDE=60°
    ∴DH=1,HE=
    ∴AH=AD+DH=5
    在Rt△AHE中,AE==1
    ∴AN=NE=,AE⊥GF,AF=EF
    ∵CD=BC,∠DCB=60°
    ∴△BCD是等边三角形,且E是CD中点
    ∴BE⊥CD,
    ∵BC=4,EC=1
    ∴BE=1
    ∵CD∥AB
    ∴∠ABE=∠BEC=90°
    在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
    ∴EF=
    由折叠性质可得∠AFG=∠EFG,
    ∴sin∠EFG= sin∠AFG = ,故选B.
    【点睛】
    本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、(0,0)
    【解析】
    根据坐标的平移规律解答即可.
    【详解】
    将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,
    那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),
    故答案为(0,0).
    【点睛】
    此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    12、
    【解析】
    连接BE,

    ∵在线段AC同侧作正方形ABMN及正方形BCEF,
    ∴BE∥AM.∴△AME与△AMB同底等高.
    ∴△AME的面积=△AMB的面积.
    ∴当AB=n时,△AME的面积为,当AB=n-1时,△AME的面积为.
    ∴当n≥2时,
    13、1
    【解析】
    分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.
    详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.
    ∵AB∥NP,
    ∴∠A=∠NPA=60°.
    在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,
    ∴AB=AP•cos∠A=4×cos60°=4×=1海里.
    故答案为1.
    点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.
    14、12
    【解析】
    由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.
    【详解】
    解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.
    【点睛】
    此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.
    15、
    【解析】
    试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.

    可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧,线段O3O4四部分构成.
    其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.
    ∵BC与AB延长线的夹角为60°,O1是圆盘在AB上滚动到与BC相切时的圆心位置,
    ∴此时⊙O1与AB和BC都相切.
    则∠O1BE=∠O1BF=60度.
    此时Rt△O1BE和Rt△O1BF全等,
    在Rt△O1BE中,BE=cm.
    ∴OO1=AB-BE=(60-)cm.
    ∵BF=BE=cm,
    ∴O1O2=BC-BF=(40-)cm.
    ∵AB∥CD,BC与水平夹角为60°,
    ∴∠BCD=120度.
    又∵∠O2CB=∠O3CD=90°,
    ∴∠O2CO3=60度.
    则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm的圆弧.
    ∴的长=×2π×10=πcm.
    ∵四边形O3O4DC是矩形,
    ∴O3O4=CD=40cm.
    综上所述,圆盘从A点滚动到D点,其圆心经过的路线长度是:
    (60-)+(40-)+π+40=(140-+π)cm.
    16、1
    【解析】
    根据二次根式的乘法法则进行计算即可.
    【详解】

    故答案为:1.
    【点睛】
    考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.
    17、8
    【解析】
    试题分析:设红球有x个,根据概率公式可得,解得:x=8.
    考点:概率.

    三、解答题(共7小题,满分69分)
    18、 (1)见解析;(1)1
    【解析】
    (1)根据角平分线的作图可得;
    (1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.
    【详解】
    (1)如图,射线CF即为所求;

    (1)∵∠CAD=∠CDA,
    ∴AC=DC,即△CAD为等腰三角形;
    又CF是顶角∠ACD的平分线,
    ∴CF是底边AD的中线,即F为AD的中点,
    ∵E是AB的中点,
    ∴EF为△ABD的中位线,
    ∴EF=BD=1.
    【点睛】
    本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.
    19、 (1)见解析;(2)2
    【解析】
    (1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;
    方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;
    (2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.
    【详解】
    (1)证法一:连接AC,如图.

    ∵AE⊥BC,AF⊥DC,AE=AF,
    ∴∠ACF=∠ACE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠DAC=∠ACB.
    ∴∠DAC=∠DCA,
    ∴DA=DC,
    ∴四边形ABCD是菱形.
    证法二:如图,

    ∵四边形ABCD是平行四边形,
    ∴∠B=∠D.
    ∵AE⊥BC,AF⊥DC,
    ∴∠AEB=∠AFD=90°,
    又∵AE=AF,
    ∴△AEB≌△AFD.
    ∴AB=AD,
    ∴四边形ABCD是菱形.
    (2)连接AC,如图.

    ∵AE⊥BC,AF⊥DC,∠EAF=60°,
    ∴∠ECF=120°,
    ∵四边形ABCD是菱形,
    ∴∠ACF=60°,
    在Rt△CFA中,AF=CF•tan∠ACF=2.
    【点睛】
    本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
    20、(1);(2)
    【解析】
    分析:(1)直接利用概率公式求解;
    (2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.
    详解:(1)甲队最终获胜的概率是;
    (2)画树状图为:

    共有8种等可能的结果数,其中甲至少胜一局的结果数为7,
    所以甲队最终获胜的概率=.
    点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    21、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析
    【解析】
    解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:
    ,解得:。
    答:每台电脑0.5万元,每台电子白板1.5万元。
    (2)设需购进电脑a台,则购进电子白板(30-a)台,
    则,解得:,即a=15,16,17。
    故共有三种方案:
    方案一:购进电脑15台,电子白板15台.总费用为万元;
    方案二:购进电脑16台,电子白板14台.总费用为万元;
    方案三:购进电脑17台,电子白板13台.总费用为万元。
    ∴方案三费用最低。
    (1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。
    (2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。
    22、路灯高CD为5.1米.
    【解析】
    根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
    【详解】
    设CD长为x米,
    ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
    ∴MA∥CD∥BN,
    ∴EC=CD=x米,
    ∴△ABN∽△ACD,
    ∴=,即,
    解得:x=5.1.
    经检验,x=5.1是原方程的解,
    ∴路灯高CD为5.1米.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.
    23、(1)12米;(2)(2+8)米
    【解析】
    (1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;
    (2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.
    【详解】
    (1)如图,设DE=x,
    ∵AB=DF=4,∠ACB=30°,
    ∴AC=8,
    ∵∠ECD=60°,
    ∴△ACE是直角三角形,
    ∵AF∥BD,
    ∴∠CAF=30°,
    ∴∠CAE=60°,∠AEC=30°,
    ∴AE=16,
    ∴Rt△AEF中,EF=8,
    即x﹣4=8,
    解得x=12,
    ∴树DE的高度为12米;
    (2)延长NM交DB延长线于点P,则AM=BP=6,
    由(1)知CD=CE=×AC=4,BC=4,
    ∴PD=BP+BC+CD=6+4+4=6+8,
    ∵∠NDP=45°,且∠NPD=90°,
    ∴NP=PD=6+8,
    ∴NM=NP﹣MP=6+8﹣4=2+8,
    ∴食堂MN的高度为(2+8)米.

    【点睛】
    此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.
    24、(1)证明见解析;(2)证明见解析
    【解析】
    (1)根据平行线性质求出∠B=∠C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;
    (2)借助(1)中结论△ABE≌△DCF,可证出AE平行且等于DF,即可证出结论.
    证明:(1)如图,∵AB∥CD,
    ∴∠B=∠C.
    ∵BF=CE
    ∴BE=CF
    ∵在△ABE与△DCF中,

    ∴△ABE≌△DCF(SAS);
    (2)如图,连接AF、DE.

    由(1)知,△ABE≌△DCF,
    ∴AE=DF,∠AEB=∠DFC,
    ∴∠AEF=∠DFE,
    ∴AE∥DF,
    ∴以A、F、D、E为顶点的四边形是平行四边形.

    相关试卷

    浦东新区重点达标名校2022年中考猜题数学试卷含解析: 这是一份浦东新区重点达标名校2022年中考猜题数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,运用乘法公式计算,如图图形中,是中心对称图形的是,如图的立体图形,从左面看可能是,|﹣3|的值是等内容,欢迎下载使用。

    2022年浙江省宁波江东区重点名校中考猜题数学试卷含解析: 这是一份2022年浙江省宁波江东区重点名校中考猜题数学试卷含解析,共26页。试卷主要包含了一组数据,关于的方程有实数根,则满足,的倒数的绝对值是,若二次函数的图象经过点等内容,欢迎下载使用。

    2022年甘肃省高台县重点达标名校中考猜题数学试卷含解析: 这是一份2022年甘肃省高台县重点达标名校中考猜题数学试卷含解析,共19页。试卷主要包含了如图,下列算式的运算结果正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map