浙江省宁波地区重点达标名校2022年中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.一次函数的图象上有点和点,且,下列叙述正确的是
A.若该函数图象交y轴于正半轴,则
B.该函数图象必经过点
C.无论m为何值,该函数图象一定过第四象限
D.该函数图象向上平移一个单位后,会与x轴正半轴有交点
2.已知x+=3,则x2+=( )
A.7 B.9 C.11 D.8
3.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( )
A.80 B.被抽取的80名初三学生
C.被抽取的80名初三学生的体重 D.该校初三学生的体重
4.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )
A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0
5.关于的分式方程解为,则常数的值为( )
A. B. C. D.
6.在实数π,0,,﹣4中,最大的是( )
A.π B.0 C. D.﹣4
7.下列计算正确的是( )
A.2m+3n=5mn B.m2•m3=m6 C.m8÷m6=m2 D.(﹣m)3=m3
8.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )
A. B. C. D.π
9.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )
A.2 B.3 C.5 D.7
10.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有( )
A.0个 B.1个 C.2个 D.3个
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_____.
12.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.
13.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为_____.
14.抛物线y=﹣x2+4x﹣1的顶点坐标为 .
15.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.
16.如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数的图象恰好经过点A′,B,则的值为_________.
三、解答题(共8题,共72分)
17.(8分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
18.(8分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.
19.(8分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)
20.(8分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.
21.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
22.(10分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.
(1)求抛物线解析式;
(2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;
(3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.
23.(12分)解方程:=1.
24.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
利用一次函数的性质逐一进行判断后即可得到正确的结论.
【详解】
解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
把代入得,,则该函数图象必经过点,故B正确;
当时,,,函数图象过一二三象限,不过第四象限,故C错误;
函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
故选B.
【点睛】
本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.
2、A
【解析】
根据完全平方公式即可求出答案.
【详解】
∵(x+)2=x2+2+
∴9=2+x2+,
∴x2+=7,
故选A.
【点睛】
本题考查完全平方公式,解题的关键是熟练运用完全平方公式.
3、C
【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
样本是被抽取的80名初三学生的体重,
故选C.
【点睛】
此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
4、A
【解析】
解:∵二次函数的图象开口向上,∴a>1.
∵对称轴在y轴的左边,∴<1.∴b>1.
∵图象与y轴的交点坐标是(1,﹣2),过(1,1)点,代入得:a+b﹣2=1.
∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.
把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,
∵b>1,∴b=2﹣a>1.∴a<2.
∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.
故选A.
【点睛】
本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.
5、D
【解析】
根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.
【详解】
解:把x=4代入方程,得
,
解得a=1.
经检验,a=1是原方程的解
故选D.
点睛:此题考查了分式方程的解,分式方程注意分母不能为2.
6、C
【解析】
根据实数的大小比较即可得到答案.
【详解】
解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
【点睛】
本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
7、C
【解析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
【详解】
解:A、2m与3n不是同类项,不能合并,故错误;
B、m2•m3=m5,故错误;
C、正确;
D、(-m)3=-m3,故错误;
故选:C.
【点睛】
本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.
8、A
【解析】
试题解析:如图,
∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,
∴BC=ACtan60°=1×=,AB=2
∴S△ABC=AC•BC=.
根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.
∴S阴影=S扇形ABB′+S△AB′C′-S△ABC
=
=.
故选A.
考点:1.扇形面积的计算;2.旋转的性质.
9、C
【解析】
分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
10、B
【解析】
仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.
【详解】
①∵y1=kx+b的图象从左向右呈下降趋势,
∴k<0正确;
②∵y2=x+a,与y轴的交点在负半轴上,
∴a<0,故②错误;
③当x<3时,y1>y2错误;
故正确的判断是①.
故选B.
【点睛】
本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长.
【详解】
解:∵菱形ABCD中,AB=4,∠C=60°,
∴△ABD是等边三角形, BO=DO=2,
AO==,
第一次旋转的弧长=,
∵第一、二次旋转的弧长和=+=,
第三次旋转的弧长为:,
故经过6次这样的操作菱形中心O所经过的路径总长为:2×(+)=.
故答案为:.
【点睛】
本题考查菱形的性质,翻转的性质以及解直角三角形的知识.
12、110
【解析】
试题解析:解:∵∠C=40°,CA=CB,
∴∠A=∠ABC=70°,
∴∠ABD=∠A+∠C=110°.
考点:等腰三角形的性质、三角形外角的性质
点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.
13、
【解析】
分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.
详解:连接AC,交EF于点M,
∵AE丄EF,EF丄FC,
∴∠E=∠F=90°,
∵∠AME=∠CMF,
∴△AEM∽△CFM,
∴,
∵AE=1,EF=FC=3,
∴,
∴EM=,FM=,
在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,
在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,
∴AC=AM+CM=5,
在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,
∴AB=,即正方形的边长为.
故答案为:.
点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.
14、(2,3)
【解析】
试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).
考点:二次函数的性质
15、m<﹣1.
【解析】
根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.
【详解】
∵关于x的方程x2﹣2x﹣m=0没有实数根,
∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,
解得:m<﹣1,
故答案为:m<﹣1.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
16、
【解析】
解:∵四边形ABCO是矩形,AB=1,
∴设B(m,1),
∴OA=BC=m,
∵四边形OA′B′D与四边形OABD关于直线OD对称,
∴OA′=OA=m,∠A′OD=∠AOD=30°,
∴∠A′OA=60°,
过A′作A′E⊥OA于E,
∴OE=m,A′E=m,
∴A′(m,m),
∵反比例函数y=(k≠0)的图象恰好经过点A′,B,
∴m•m=m,
∴m=,
∴k=.
【点睛】
本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.
三、解答题(共8题,共72分)
17、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
【解析】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
【详解】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
依题意,得:=3×,
解得:x=4,
经检验,x=4是原方程的解,且符合题意.
答:第一批饮料进货单价是4元/瓶;
(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
设销售单价为y元/瓶,
依题意,得:(450+1350)y﹣1800﹣8100≥2100,
解得:y≥1.
答:销售单价至少为1元/瓶.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
18、38+12
【解析】
根据∠ABC=90°,AE=CE,EB=12,求出AC,根据Rt△ABC中,∠CAB=30°,BC=12,求出根据DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案.
【详解】
∵∠ABC=90°,AE=CE,EB=12,
∴EB=AE=CE=12,
∴AC=AE+CE=24,
∵在Rt△ABC中,∠CAB=30°,
∴BC=12,
∵DE⊥AC,AE=CE,
∴AD=DC,
在Rt△ADE中,由勾股定理得
∴DC=13,
∴四边形ABCD的周长=AB+BC+CD+DA=
【点睛】
此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长.
19、电视塔高为米,点的铅直高度为(米).
【解析】
过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.
【详解】
过点P作PF⊥OC,垂足为F.
在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),
过点P作PB⊥OA,垂足为B.
由i=1:2,设PB=x,则AB=2x.
∴PF=OB=100+2x,CF=100﹣x.
在Rt△PCF中,由∠CPF=45°,
∴PF=CF,即100+2x=100﹣x,
∴x= ,即PB=米.
【点睛】
本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.
20、135°
【解析】
先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,
∵AD=DE=CE,
∴AD=DE=CE=BC,
∴∠DAE=∠AED,∠CBE=∠CEB,
∵∠DEC=90°,
∴∠EDC=∠ECD=45°,
设∠DAE=∠AED=x,∠CBE=∠CEB=y,
∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,
∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y
,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,
∴2x﹣45°=225°﹣2y,
∴x+y=135°,
∴∠AEB=360°﹣135°﹣90°=135°.
【点睛】
本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.
21、29.8米.
【解析】
作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
【详解】
解:如图,作,,
由题意得:
米,
米,
则米,
答:这架无人飞机的飞行高度为米.
【点睛】
此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
22、 (1) 抛物线解析式为y=﹣;(2) DF=3;(3) 点E的坐标为E1(4,1)或E2(﹣ ,﹣)或E3( ,﹣)或E4(,﹣).
【解析】
(1)将点A、C坐标代入抛物线解析式求解可得;
(2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;
(3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.
【详解】
(1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;
(2)如图1.
∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.
又∵DC=DE,∴△COD≌△DHE,∴DH=OC.
又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;
(3)如图2,设点D的坐标为(t,0).
∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:
①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);
②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);
综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.
23、
【解析】
先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.
【详解】
原方程变形为,
方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),
解得 .
检验:把代入(2x﹣1),(2x﹣1)≠0,
∴是原方程的解,
∴原方程的.
【点睛】
本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.
24、解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.
根据题意,得,
解得x=1.
经检验,x=1是方程的解且符合题意.
1.5 x=2.
∴甲,乙两公司单独完成此项工程,各需1天,2天.
(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,
根据题意得12(y+y﹣1500)=10100解得y=5000,
甲公司单独完成此项工程所需的施工费:1×5000=100000(元);
乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);
∴让一个公司单独完成这项工程,甲公司的施工费较少.
【解析】
(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.
(2)分别求得两个公司施工所需费用后比较即可得到结论.
宁波市海曙区重点达标名校2022年中考四模数学试题含解析: 这是一份宁波市海曙区重点达标名校2022年中考四模数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,的值等于,6的绝对值是等内容,欢迎下载使用。
2022年浙江省义乌地区重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022年浙江省义乌地区重点达标名校中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2022届浙江省宁波市镇海区重点达标名校中考冲刺卷数学试题含解析: 这是一份2022届浙江省宁波市镇海区重点达标名校中考冲刺卷数学试题含解析,共17页。试卷主要包含了3的相反数是,已知点A等内容,欢迎下载使用。