![浙江省温州实验中学2021-2022学年中考数学模试卷含解析第1页](http://www.enxinlong.com/img-preview/2/3/13768913/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省温州实验中学2021-2022学年中考数学模试卷含解析第2页](http://www.enxinlong.com/img-preview/2/3/13768913/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省温州实验中学2021-2022学年中考数学模试卷含解析第3页](http://www.enxinlong.com/img-preview/2/3/13768913/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
浙江省温州实验中学2021-2022学年中考数学模试卷含解析
展开
这是一份浙江省温州实验中学2021-2022学年中考数学模试卷含解析,共24页。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
2.不等式组的解集为.则的取值范围为( )
A. B. C. D.
3.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
4.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
5.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( )
A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是3
6.x=1是关于x的方程2x﹣a=0的解,则a的值是( )
A.﹣2 B.2 C.﹣1 D.1
7.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
8.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是( )cm.
A.7 B.11 C.13 D.16
9.已知一个多边形的内角和是外角和的3倍,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
10.下列生态环保标志中,是中心对称图形的是( )
A. B. C. D.
11.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
12.的绝对值是( )
A.﹣4 B. C.4 D.0.4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.四边形ABCD中,向量_____________.
14.若反比例函数y=的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),则这个反比例函数的表达式为_____.
15.已知是二元一次方程组的解,则m+3n的立方根为__.
16.如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.
17.请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)
18.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.
20.(6分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
21.(6分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.
(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)
(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.
22.(8分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
23.(8分)化简:(x+7)(x-6)-(x-2)(x+1)
24.(10分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.
由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
①求抛物线的解析式;
②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
25.(10分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别
成绩x分
频数(人数)
第1组
50≤x<60
6
第2组
60≤x<70
8
第3组
70≤x<80
14
第4组
80≤x<90
a
第5组
90≤x<100
10
26.(12分)老师布置了一个作业,如下:已知:如图1的对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.
某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.
27.(12分)已知关于x的方程x1+(1k﹣1)x+k1﹣1=0有两个实数根x1,x1.求实数k的取值范围; 若x1,x1满足x11+x11=16+x1x1,求实数k的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
2、B
【解析】
求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.
【详解】
解:解不等式组,得.
∵不等式组的解集为x<2,
∴k+1≥2,
解得k≥1.
故选:B.
【点睛】
本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.
3、B
【解析】
先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.
【详解】
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
设CD=1,CF=x,则CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,
CF2+CD2=DF2,
即x2+1=(2-x)2,
解得:x=,
∴sin∠BED=sin∠CDF=.
故选B.
【点睛】
本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.
4、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故答案选:B.
【点睛】
本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
5、C
【解析】
由极差、众数、中位数、平均数的定义对四个选项一一判断即可.
【详解】
A.极差为5﹣1.5=3.5,此选项正确;
B.1.5个数最多,为2个,众数是1.5,此选项正确;
C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为×(2.5+3)=2.75,此选项错误;
D.平均数为:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.
故选C.
【点睛】
本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.
6、B
【解析】
试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.
故选B.
考点:一元一次方程的解.
7、C
【解析】
依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.
【详解】
解:∵a∥b,
∴∠1=∠BAC=40°,
又∵∠ABC=90°,
∴∠2=90°−40°=50°,
故选C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
8、C
【解析】
直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.
【详解】
∵将线段DC沿着CB的方向平移7cm得到线段EF,
∴EF=DC=4cm,FC=7cm,
∵AB=AC,BC=12cm,
∴∠B=∠C,BF=5cm,
∴∠B=∠BFE,
∴BE=EF=4cm,
∴△EBF的周长为:4+4+5=13(cm).
故选C.
【点睛】
此题主要考查了平移的性质,根据题意得出BE的长是解题关键.
9、D
【解析】
根据多边形的外角和是360°,以及多边形的内角和定理即可求解.
【详解】
设多边形的边数是n,则
(n−2)⋅180=3×360,
解得:n=8.
故选D.
【点睛】
此题考查多边形内角与外角,解题关键在于掌握其定理.
10、B
【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
故选B.
【考点】中心对称图形.
11、C
【解析】
根据图像可得:a
相关试卷
这是一份2023年浙江省温州市南浦实验中学等校中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省温州市南浦实验中学2021-2022学年中考数学全真模拟试题含解析,共21页。
这是一份浙江省温州市鹿城区温州市实验中学2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了如图,点A所表示的数的绝对值是等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)