浙江省温州市新星学校2022年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )
A.相交 B.内切 C.外离 D.内含
2.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是( )
A. B. C. D.
3.若=1,则符合条件的m有( )
A.1个 B.2个 C.3个 D.4个
4.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG 于点E,CF⊥AG于点F,则AE-GF的值为( )
A.1 B. C. D.
5.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )
A. B. C. D.
6.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( )
A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13
7.下列二次根式中,是最简二次根式的是( )
A. B. C. D.
8.某射手在同一条件下进行射击,结果如下表所示:
射击次数(n)
10
20
50
100
200
500
……
击中靶心次数(m)
8
19
44
92
178
451
……
击中靶心频率()
0.80
0.95
0.88
0.92
0.89
0.90
……
由此表推断这个射手射击1次,击中靶心的概率是( )
A.0.6 B.0.7 C.0.8 D.0.9
9.下列哪一个是假命题( )
A.五边形外角和为360°
B.切线垂直于经过切点的半径
C.(3,﹣2)关于y轴的对称点为(﹣3,2)
D.抛物线y=x2﹣4x+2017对称轴为直线x=2
10.下列现象,能说明“线动成面”的是( )
A.天空划过一道流星
B.汽车雨刷在挡风玻璃上刷出的痕迹
C.抛出一块小石子,石子在空中飞行的路线
D.旋转一扇门,门在空中运动的痕迹
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在实数范围内分解因式: =_________
12.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.
13.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.
14.点(a-1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是________.
15.观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_____(用含n的代数式表示)
16.分解因式:a2-2ab+b2-1=______.
三、解答题(共8题,共72分)
17.(8分)阅读下列材料:
题目:如图,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,请用sinA、cosA表示sin2A.
18.(8分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
19.(8分)如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
20.(8分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)
(1)求a、b的值;
(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;
(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.
21.(8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:该公司“高级技工”有 名;所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.
22.(10分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:
(I)本次随机抽样调查的学生人数为 ,图①中的m的值为 ;
(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
23.(12分)解分式方程:.
24.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
试题分析:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,
∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.
故选A.
考点:圆与圆的位置关系.
2、C
【解析】
根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.
【详解】
解:∵AO=2,OB=1,BC=2,
∴a=-2,b=1,c=3,
∴|a|≠|c|,ab<0,,,
故选:C.
【点睛】
此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.
3、C
【解析】
根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.
【详解】
=1
m2-9=0或m-2= 1
即m= 3或m=3,m=1
m有3个值
故答案选C.
【点睛】
本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.
4、D
【解析】
设AE=x,则AB=x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.
【详解】
设AE=x,
∵四边形ABCD是矩形,
∴∠BAD=∠D=90°,CD=AB,
∵AG平分∠BAD,
∴∠DAG=45°,
∴△ADG是等腰直角三角形,
∴DG=AD=1,
∴AG=AD=,
同理:BE=AE=x, CD=AB=x,
∴CG=CD-DG=x -1,
同理: CG=GF,
∴FG= ,
∴AE-GF=x-(x-)=.
故选D.
【点睛】
本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.
5、B
【解析】
根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.
【详解】
(1)当0≤x≤2时,
BQ=2x
当2≤x≤4时,如下图
由上可知
故选:B.
【点睛】
本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.
6、A
【解析】
试题解析:∵原来的平均数是13岁,
∴13×23=299(岁),
∴正确的平均数a=≈12.97<13,
∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,
∴b=13;
故选A.
考点:1.平均数;2.中位数.
7、B
【解析】
根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.
【详解】
A、 =4,不符合题意;
B、是最简二次根式,符合题意;
C、=,不符合题意;
D、=,不符合题意;
故选B.
【点睛】
本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
8、D
【解析】
观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.
【详解】
依题意得击中靶心频率为0.90,
估计这名射手射击一次,击中靶心的概率约为0.90.
故选:D.
【点睛】
此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.
9、C
【解析】
分析:
根据每个选项所涉及的数学知识进行分析判断即可.
详解:
A选项中,“五边形的外角和为360°”是真命题,故不能选A;
B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;
C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;
D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.
故选C.
点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.
10、B
【解析】
本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;
【详解】
解:∵A、天空划过一道流星说明“点动成线”,
∴故本选项错误.
∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,
∴故本选项正确.
∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,
∴故本选项错误.
∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,
∴故本选项错误.
故选B.
【点睛】
本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2(x+)(x-).
【解析】
先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
【详解】
2x2-6=2(x2-3)=2(x+)(x-).
故答案为2(x+)(x-).
【点睛】
本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
12、2
【解析】
延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.
【详解】
解:如图所示,
延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.
由勾股定理AB′=2
∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.
考点:解直角三角形的应用
点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键
13、3.
【解析】
试题解析:把(-1,0)代入得:
2-3+k-2=0,
解得:k=3.
故答案为3.
14、﹣1<a<1
【解析】
解:∵k>0,
∴在图象的每一支上,y随x的增大而减小,
①当点(a-1,y1)、(a+1,y2)在图象的同一支上,
∵y1<y2,
∴a-1>a+1,
解得:无解;
②当点(a-1,y1)、(a+1,y2)在图象的两支上,
∵y1<y2,
∴a-1<0,a+1>0,
解得:-1<a<1.
故答案为:-1<a<1.
【点睛】
本题考查反比例函数的性质.
15、3n+1
【解析】
根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.
【详解】
解:由题意可知:每1个都比前一个多出了3个“”,
∴第n个图案中共有“”为:4+3(n﹣1)=3n+1
故答案为:3n+1.
【点睛】
本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.
16、 (a-b+1)(a-b-1)
【解析】
当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.
【详解】
a2-2ab+b2-1,
=(a-b)2-1,
=(a-b+1)(a-b-1).
【点睛】
本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.
三、解答题(共8题,共72分)
17、sin2A=2cosAsinA
【解析】
先作出直角三角形的斜边的中线,进而求出,∠CED=2∠A,最后用三角函数的定义即可得出结论
【详解】
解:如图,
作Rt△ABC的斜边AB上的中线CE,
则
∴∠CED=2∠A,
过点C作CD⊥AB于D,
在Rt△ACD中,CD=ACsinA,
在Rt△ABC中,AC=ABcosA=cosA
在Rt△CED中,sin2A=sin∠CED== 2ACsinA=2cosAsinA
【点睛】
此题主要解直角三角形,锐角三角函数的定义,直角三角形的斜边的中线等于斜边的一半,构造出直角三角形和∠CED=2∠A是解本题的关键.
18、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.
【解析】
分析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.
详解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
根据题意得:
,
解得:.
答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.
(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).
答:打折后购买这批粽子比不打折节省了3640元.
点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.
19、(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.
【解析】
(1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°;
(2)分当 B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;
(3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;
②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD •PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.
【详解】
(1)解:(1)连接BC,
∵AB是直径,
∴∠ACB=90°.
∴△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°;
(2)解:∵,
∴∠CDB=∠CDP=45°,CB= CA,
∴CD平分∠BDP
又∵CD⊥BP,
∴BE=EP,
即CD是PB的中垂线,
∴CP=CB= CA,
(3)① (Ⅰ)如图2,当 B在PA的中垂线上,且P在右时,∠ACD=15°;
(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;
(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;
(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°
②(Ⅰ)如图6, ,
.
(Ⅱ)如图7, ,
,
.
,
.
,
,
,
.
设BD=9k,PD=2k,
,
,
,
.
【点睛】
本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.
20、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
【解析】
试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.
试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点, ∴C(0,1),
∵点C在直线l2上, ∴b=1, ∴直线l2的解析式为y=ax+1, ∵点B在直线l2上,
∴2a+1=0, ∴a=﹣;
(2)、解:由(1)知,l1的解析式为y=x+1,令y=0, ∴x=﹣1,
由图象知,点Q在点A,B之间, ∴﹣1<n<2
(3)、解:如图,
∵△PAC是等腰三角形, ∴①点x轴正半轴上时,当AC=P1C时,
∵CO⊥x轴, ∴OP1=OA=1, ∴BP1=OB﹣OP1=2﹣1=1, ∴1÷1=1s,
②当P2A=P2C时,易知点P2与O重合, ∴BP2=OB=2, ∴2÷1=2s,
③点P在x轴负半轴时,AP3=AC, ∵A(﹣1,0),C(0,1), ∴AC=, ∴AP3=,
∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,
∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣ )s,
即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.
21、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
【解析】
(1)用总人数50减去其它部门的人数;
(2)根据中位数和众数的定义求解即可;
(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
【详解】
(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
在这些数中1600元出现的次数最多,因而众数是1600元;
(3)这个经理的介绍不能反映该公司员工的月工资实际水平.
用1700元或1600元来介绍更合理些.
(4)(元).
能反映该公司员工的月工资实际水平.
22、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人
【解析】
(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;
(II)根据众数、中位数和平均数的定义计算可得;
(III)用总人数乘以样本中5天、6天的百分比之和可得.
【详解】
解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,
故答案为150、14;
(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,
平均数为=3.5天;
(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.
【点睛】
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
23、.
【解析】
试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验.
试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解.
考点:解分式方程.
24、AC= 6.0km,AB= 1.7km;
【解析】
在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
【详解】
由题意可得:∠AOC=90°,OC=5km.
在Rt△AOC中,
∵AC=,
∴AC=≈6.0km,
∵tan34°=,
∴OA=OC•tan34°=5×0.67=3.35km,
在Rt△BOC中,∠BCO=45°,
∴OB=OC=5km,
∴AB=5﹣3.35=1.65≈1.7km.
答:AC的长为6.0km,AB的长为1.7km.
【点睛】
本题主要考查三角函数的知识。
2022年浙江省嘉兴市秀洲区中考数学考试模拟冲刺卷含解析: 这是一份2022年浙江省嘉兴市秀洲区中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了下列事件中为必然事件的是,估计﹣1的值为,如果将直线l1,如图,已知,,则的度数为等内容,欢迎下载使用。
2022届浙江省温州市实验校中考数学考试模拟冲刺卷含解析: 这是一份2022届浙江省温州市实验校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。
2022届新疆乌鲁木齐仟叶学校中考数学考试模拟冲刺卷含解析: 这是一份2022届新疆乌鲁木齐仟叶学校中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了《语文课程标准》规定等内容,欢迎下载使用。