|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江省吴兴区2021-2022学年中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    浙江省吴兴区2021-2022学年中考试题猜想数学试卷含解析01
    浙江省吴兴区2021-2022学年中考试题猜想数学试卷含解析02
    浙江省吴兴区2021-2022学年中考试题猜想数学试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省吴兴区2021-2022学年中考试题猜想数学试卷含解析

    展开
    这是一份浙江省吴兴区2021-2022学年中考试题猜想数学试卷含解析,共24页。试卷主要包含了下面几何的主视图是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有(  )
    A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<0
    2.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是  

    A.55° B.60° C.65° D.70°
    3.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )

    A. B. C. D.4
    4.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为(  )

    A.π B.2π C.4π D.8π
    5.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )
    A.120元 B.125元 C.135元 D.140元
    6.已知函数,则使y=k成立的x值恰好有三个,则k的值为( )
    A.0 B.1 C.2 D.3
    7.如图所示的几何体,它的左视图与俯视图都正确的是( )

    A. B. C. D.
    8.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )
    A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×106
    9.下面几何的主视图是( )

    A. B. C. D.
    10.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx-k的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.

    12.已知a+ =3,则的值是_____.
    13.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.

    14.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.

    15.点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1,y2,y3的大小关系是_____.
    16.如图,长方形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则△AFC的面积等于___.

    三、解答题(共8题,共72分)
    17.(8分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:
    图1 各项报名人数扇形统计图:

    图2 各项报名人数条形统计图:

    根据以上信息解答下列问题:
    (1)学生报名总人数为 人;
    (2)如图1项目D所在扇形的圆心角等于 ;
    (3)请将图2的条形统计图补充完整;
    (4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.
    18.(8分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
    若△CEF与△ABC相似.
    ①当AC=BC=2时,AD的长为   ;
    ②当AC=3,BC=4时,AD的长为   ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
    19.(8分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)

    20.(8分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.
    (1)求抛物线C1的表达式;
    (2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;
    (3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.

    21.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:
    今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?
    译文为:
    现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
    请解答上述问题.
    22.(10分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
    项目
    选手
    服装
    普通话
    主题
    演讲技巧
    李明
    85
    70
    80
    85
    张华
    90
    75
    75
    80
    结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.

    23.(12分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).
    (1)求抛物线的表达式;
    (2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
    (3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.

    24.如图,是的直径,是圆上一点,弦于点,且.过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点.

    (1)求证:与相切;
    (2)连接,求的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.
    2、C
    【解析】
    根据旋转的性质和三角形内角和解答即可.
    【详解】
    ∵将△ABC绕点C顺时针旋转90°得到△EDC.
    ∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,
    ∴∠ACD=90°-20°=70°,
    ∵点A,D,E在同一条直线上,
    ∴∠ADC+∠EDC=180°,
    ∵∠EDC+∠E+∠DCE=180°,
    ∴∠ADC=∠E+20°,
    ∵∠ACE=90°,AC=CE
    ∴∠DAC+∠E=90°,∠E=∠DAC=45°
    在△ADC中,∠ADC+∠DAC+∠DCA=180°,
    即45°+70°+∠ADC=180°,
    解得:∠ADC=65°,
    故选C.
    【点睛】
    此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.
    3、B
    【解析】
    分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
    详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
    ∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
    故选B.
    点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
    4、B
    【解析】
    试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径的长为:=2π.故选B.
    考点:弧长的计算;旋转的性质.
    5、B
    【解析】
    试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.
    解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80%
    解这个方程得:x=125
    则这种服装每件的成本是125元.
    故选B.
    考点:一元一次方程的应用.
    6、D
    【解析】
    解:如图:

    利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.
    故选:D.
    7、D
    【解析】
    试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.
    考点:D.
    8、C
    【解析】
    解:,故选C.
    9、B
    【解析】
    主视图是从物体正面看所得到的图形.
    【详解】
    解:从几何体正面看
    故选B.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
    10、B
    【解析】
    试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.
    考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    过点C作CH∥AB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值.
    【详解】
    如下图,过点C作CH∥AB交DE的延长线于点H,
    则,

    ∵DF∥CH,
    ∴,
    ∴,
    ∴,
    同理,
    ∴,
    ∴,解得t=1,t=(舍去),
    故答案为:1.
    【点睛】
    本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.
    12、7
    【解析】
    根据完全平方公式可得:原式=.
    13、5
    【解析】
    试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.
    考点:直角三角形斜边上的中线.
    14、1
    【解析】
    根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.
    【详解】
    设小明的速度为akm/h,小亮的速度为bkm/h,

    解得, ,
    当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),
    故答案为1.
    【点睛】
    此题考查一次函数的应用,解题关键在于列出方程组.
    15、y2<y3<y1
    【解析】
    把点的坐标分别代入抛物线解析式可分别求得y1、y2、y3的值,比较可求得答案.
    【详解】
    ∵y=2x2-4x+c,
    ∴当x=-3时,y1=2×(-3)2-4×(-3)+c=30+c,
    当x=2时,y2=2×22-4×2+c=c,
    当x=3时,y3=2×32-4×3+c=6+c,
    ∵c<6+c<30+c,
    ∴y2<y3<y1,
    故答案为y2<y3<y1.
    【点睛】
    本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.
    16、
    【解析】
    由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC,由平行线的性质和折叠的性质可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的长,即可求△AFC的面积.
    【详解】
    解:四边形ABCD是矩形
    ,,

    折叠



    在中,,


    .
    故答案为:.
    【点睛】
    本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF的长是本题的关键.

    三、解答题(共8题,共72分)
    17、(1)200;(2)54°;(3)见解析;(4)
    【解析】
    (1)根据A的人数及所占的百分比即可求出总人数;
    (2)用D的人数除以总人数再乘360°即可得出答案;
    (3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;
    (4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.
    【详解】
    解:(1)学生报名总人数为(人),
    故答案为:200;
    (2)项目所在扇形的圆心角等于,
    故答案为:54°;
    (3)项目的人数为,
    补全图形如下:

    (4)画树状图得:

    所有出现的等可能性结果共有12种,其中满足条件的结果有2种.
    恰好选中甲、乙两名同学的概率为.
    【点睛】
    本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.
    18、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
    【解析】
    (1)①当AC=BC=2时,△ABC为等腰直角三角形;
    ②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
    (2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
    【详解】
    (1)若△CEF与△ABC相似.
    ①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,

    此时D为AB边中点,AD=AC=.
    ②当AC=3,BC=4时,有两种情况:
    (I)若CE:CF=3:4,如答图2所示,

    ∵CE:CF=AC:BC,∴EF∥BC.
    由折叠性质可知,CD⊥EF,
    ∴CD⊥AB,即此时CD为AB边上的高.
    在Rt△ABC中,AC=3,BC=4,∴BC=1.
    ∴cosA=.∴AD=AC•cosA=3×=.
    (II)若CF:CE=3:4,如答图3所示.
    ∵△CEF∽△CAB,∴∠CEF=∠B.
    由折叠性质可知,∠CEF+∠ECD=90°.
    又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
    同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
    ∴此时AD=AB=×1=.
    综上所述,当AC=3,BC=4时,AD的长为或.
    (2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
    如图所示,连接CD,与EF交于点Q.
    ∵CD是Rt△ABC的中线
    ∴CD=DB=AB,
    ∴∠DCB=∠B.
    由折叠性质可知,∠CQF=∠DQF=90°,
    ∴∠DCB+∠CFE=90°,
    ∵∠B+∠A=90°,
    ∴∠CFE=∠A,
    又∵∠ACB=∠ACB,
    ∴△CEF∽△CBA.
    19、DE的长度为6+1.
    【解析】
    根据相似三角形的判定与性质解答即可.
    【详解】
    解:过E作EF⊥BC,

    ∵∠CDE=120°,
    ∴∠EDF=60°,
    设EF为x,DF=x,
    ∵∠B=∠EFC=90°,
    ∵∠ACB=∠ECD,
    ∴△ABC∽△EFC,
    ∴,
    即,
    解得:x=9+2,
    ∴DE==6+1,
    答:DE的长度为6+1.
    【点睛】
    本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
    20、(1)y;(2);(3)E(,0).
    【解析】
    (1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;
    (2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;
    (3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.
    【详解】
    解:(1)∵抛物线C1的顶点为,
    ∴可设抛物线C1的表达式为y,
    将B(﹣1,0)代入抛物线解析式得:,
    ∴,
    解得:a,
    ∴抛物线C1的表达式为y,即y.
    (2)设抛物线C2的顶点坐标为
    ∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称


    ∴抛物线C2的顶点坐标为()
    可设抛物线C2的表达式为y
    ∵抛物线C2开口朝下,且形状不变

    ∴抛物线C2的表达式为y,即.
    (3)如图,作GK⊥x轴于G,DH⊥AB于H.

    由题意GK=DH=3,AH=HB=EK=KF,
    ∵四边形AGFD是矩形,
    ∴∠AGF=∠GKF=90°,
    ∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,
    ∴∠AGK=∠GFK.
    ∵∠AKG=∠FKG=90°,
    ∴△AGK∽△GFK,
    ∴,
    ∴,
    ∴AK=6,

    ∴BE=BK﹣EK=3,
    ∴OE,
    ∴E(,0).
    【点睛】
    本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.
    21、共有7人,这个物品的价格是53元.
    【解析】
    根据题意,找出等量关系,列出一元一次方程.
    【详解】
    解:设共有x人,这个物品的价格是y元,
    解得
    答:共有7人,这个物品的价格是53元.
    【点睛】
    本题考查了二元一次方程的应用.
    22、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
    【解析】
    (1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
    (2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
    (3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
    【详解】
    (1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
    普通话项目对应扇形的圆心角是:360°×20%=72°;
    (2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
    (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
    张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
    ∵80.5>78.5,
    ∴李明的演讲成绩好,
    故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
    【点睛】
    本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
    23、 (1) y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).
    【解析】
    (1)将点B坐标代入解析式求得a的值即可得;
    (2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得=
    ==,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;
    (3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.
    【详解】
    解:(1)把点B(-,2)代入y=a(x-)2-2,
    解得a=1,
    ∴抛物线的表达式为y=(x-)2-2,
    (2)由y=(x-)2-2知A(,-2),
    设直线AB表达式为y=kx+b,代入点A,B的坐标得,
    解得,
    ∴直线AB的表达式为y=-2x-1,
    易求E(0,-1),F(0,-),M(-,0),
    若∠OPM=∠MAF,
    ∴OP∥AF,
    ∴△OPE∽△FAE,
    ∴,
    ∴OP=FA= ,
    设点P(t,-2t-1),则,
    解得t1=-,t2=-,
    由对称性知,当t1=-时,也满足∠OPM=∠MAF,
    ∴t1=-,t2=-都满足条件,
    ∵△POE的面积=OE·|t|,
    ∴△POE的面积为或;
    (3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,

    设Q(a,-2a-1),则NE=-a,QN=-2a.
    由翻折知QN′=QN=-2a,N′E=NE=-a,
    由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
    ∴==,即===2,
    ∴QR=2,ES= ,
    由NE+ES=NS=QR可得-a+=2,
    解得a=-,
    ∴Q(-,),
    如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.

    设NE=a,则N′E=a.
    易知RN′=2,SN′=1,QN′=QN=3,
    ∴QR=,SE=-a.
    在Rt△SEN′中,(-a)2+12=a2,
    解得a=,
    ∴Q(-,2),
    如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.

    设NE=a,则N′E=a.
    易知RN′=2,SN′=1,QN′=QN=3,
    ∴QR=,SE=-a.
    在Rt△SEN′中,(-a)2+12=a2,
    解得a=,
    ∴Q(,2).
    综上,点Q的坐标为(-,)或(-,2)或(,2).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.
    24、(1)见解析;(2)
    【解析】
    (1)连接,,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得与相切;(2)作于点.设,则,.根据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三角函数的定义即可求出的值.
    【详解】
    (1)连接,.
    ∵是的直径,弦于点,
    ∴,.
    ∵,
    ∴.
    ∴为等边三角形.
    ∴,∠DAE=∠EAC=30°,
    ∵OA=OC,
    ∴∠OAC=∠OCA=30°,
    ∴∠1=∠DCA-∠OCA=30°,
    ∵,
    ∴∠DCG=∠CDA=∠60°,
    ∴∠OCG=∠DCG+∠1=60°+30°=90°,
    ∴.
    ∴与相切.

    (2)连接EF,作于点.
    设,则,.
    ∵与相切,
    ∴.
    又∵,
    ∴.
    又∵,
    ∴四边形为平行四边形.
    ∵,
    ∴四边形为菱形.
    ∴,.
    由(1)得,
    ∴,.
    ∴.
    ∵在中,,
    ∴.

    【点睛】
    本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.

    相关试卷

    浙江省吴兴区七校联考2021-2022学年中考猜题数学试卷含解析: 这是一份浙江省吴兴区七校联考2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了如图,一、单选题等内容,欢迎下载使用。

    浙江省宁波市明望中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份浙江省宁波市明望中学2021-2022学年中考试题猜想数学试卷含解析,共21页。

    2021-2022学年浙江省吴兴区中考适应性考试数学试题含解析: 这是一份2021-2022学年浙江省吴兴区中考适应性考试数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,下列各组数中,互为相反数的是,不等式组的正整数解的个数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map