![浙江省嘉兴市南湖区实验2022年十校联考最后数学试题含解析第1页](http://www.enxinlong.com/img-preview/2/3/13769095/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省嘉兴市南湖区实验2022年十校联考最后数学试题含解析第2页](http://www.enxinlong.com/img-preview/2/3/13769095/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省嘉兴市南湖区实验2022年十校联考最后数学试题含解析第3页](http://www.enxinlong.com/img-preview/2/3/13769095/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
浙江省嘉兴市南湖区实验2022年十校联考最后数学试题含解析
展开
这是一份浙江省嘉兴市南湖区实验2022年十校联考最后数学试题含解析,共23页。试卷主要包含了一元二次方程的根的情况是, 1分等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列四个多项式,能因式分解的是( )
A.a-1 B.a2+1
C.x2-4y D.x2-6x+9
2.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )
A. B. C. D.
3.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
A. B. C. D.
4.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为( )
A.0.135×106 B.1.35×105 C.13.5×104 D.135×103
5.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
6.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( )
A.﹣=10 B.﹣=10
C.﹣=10 D. +=10
7.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是( )
A.﹣10 B.10 C.﹣6 D.2
8.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )
A.3 B.4 C.5 D.6
9.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为( )
A.6×105 B.6×106 C.6×107 D.6×108
10.一元二次方程的根的情况是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
二、填空题(共7小题,每小题3分,满分21分)
11.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.
12.分解因式:_____.
13.若关于的一元二次方程有两个不相等的实数根,则的取值范围为__________.
14.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
15.对于函数,若x>2,则y______3(填“>”或“<”).
16.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.
17.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.
三、解答题(共7小题,满分69分)
18.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.
()请直接写出袋子中白球的个数.
()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
19.(5分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P.
(1)求这条抛物线的表达式和顶点P的坐标;
(2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;
(3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.
20.(8分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
21.(10分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.
22.(10分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.
由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
①求抛物线的解析式;
②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
23.(12分)解不等式组并写出它的整数解.
24.(14分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.
(1)求直线BC的解析式;
(2)点D在抛物线上,且点D的横坐标为1.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
试题解析:x2-6x+9=(x-3)2.
故选D.
考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
2、D
【解析】
分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.
详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),
∴AC=-1-(-1)=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴矩形ACD A′的面积等于9,
∴AC·AA′=3AA′=9,
∴AA′=3,
∴新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,
∴新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1.
故选D.
点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.
3、D
【解析】
甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
【详解】
解:由于函数的图像经过点,则有
∴图象过第二、四象限,
∵k=-1,
∴一次函数y=x-1,
∴图象经过第一、三、四象限,
故选:D.
【点睛】
本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
4、B
【解析】
根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).
【详解】
解:135000用科学记数法表示为:1.35×1.
故选B.
【点睛】
科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、D
【解析】
∵函数的图象过点A(1,m),B(4,n),
∴m==,n==3,
∴A(1,),B(4,3),
过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
∴AC=4﹣1=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴AC•AA′=3AA′=9,
∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
∴新图象的函数表达式是.
故选D.
6、A
【解析】
根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
【详解】
设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
根据题意列方程为:.
故选:.
【点睛】
此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
7、D
【解析】
根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.
【详解】
解:根据题意得:
x1+x2=﹣m=2+4,
解得:m=﹣6,
x1•x2=n=2×4,
解得:n=8,
m+n=﹣6+8=2,
故选D.
【点睛】
本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.
8、B
【解析】
分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.
9、C
【解析】
将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即可.
【详解】
解:6000万=6×1.
故选:C.
【点睛】
此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.
10、D
【解析】
试题分析:△=22-4×4=-12
相关试卷
这是一份浙江杭州西湖区重点名校2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,已知m=,n=,则代数式的值为等内容,欢迎下载使用。
这是一份江苏省南菁高级中学2021-2022学年十校联考最后数学试题含解析,共25页。试卷主要包含了若等式x2+ax+19=等内容,欢迎下载使用。
这是一份2022年福建省泉州实验中学十校联考最后数学试题含解析,共22页。试卷主要包含了函数y=的自变量x的取值范围是,如图,点A所表示的数的绝对值是,不等式3x<2等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)