终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学八下 18.1.2.2《平行四边形的判定(2)》课件

    立即下载
    加入资料篮
    18.1.2.2《平行四边形的判定(2)》课件第1页
    18.1.2.2《平行四边形的判定(2)》课件第2页
    18.1.2.2《平行四边形的判定(2)》课件第3页
    18.1.2.2《平行四边形的判定(2)》课件第4页
    18.1.2.2《平行四边形的判定(2)》课件第5页
    18.1.2.2《平行四边形的判定(2)》课件第6页
    18.1.2.2《平行四边形的判定(2)》课件第7页
    18.1.2.2《平行四边形的判定(2)》课件第8页
    还剩19页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级下册18.1.2 平行四边形的判定优秀课件ppt

    展开

    这是一份人教版八年级下册18.1.2 平行四边形的判定优秀课件ppt,共27页。PPT课件主要包含了你能证明吗,一组对应边相等,两组对边分别相等,证明连接AC,∵AD∥BC,∴∠DAC∠ACB,∴ΔABC≌ΔCDA,∴∠BAC∠ACD,∴AB∥CD,你还有其他证法吗等内容,欢迎下载使用。
    掌握“一组对边平行且相等的四边形是平行四边形”的判定方法.
    会进行平行四边形的性质与判定的综合运用.
    只要使互相平行的夹在铁轨之间的枕木长相等就可以了
    那这是为什么呢?会不会跟我们学过的平行四边形有关呢?
    问题 我们知道,两组对边分别平行或相等的是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?
    猜想1:一组对边相等的四边形是平行四边形.
    等腰梯形不是平行四边形,因而此猜想错误.
    猜想2:一组对边平行的四边形是平行四边形.
    梯形的上下底平行,但不是平行四边形,因而此猜想错误.
    活动 如图,将线段AB向右平移BC长度后得到线段 CD,连接AD,BC, 由此你能猜想四边形ABCD的形状吗?
    四边形ABCD是平行四边形
    猜想3:一组对边平行且相等的四边形是平行四边形.
    作对角线构造全等三角形
    如图,在四边形ABCD中,AB=CD且AB∥CD,求证:四边形ABCD是平行四边形.
    又∵AD=BC,AC=AC,
    ∴四边形ABCD是平行四边形
    (两组对边分别平行的四边形是平行四边形)
    一组对边平行且相等的四边形是平行四边形
    平行四边形的判定定理:
    证明: ∵四边形ABCD是平行四边形,∴AB =CD,EB //FD.又∵EB = AB ,FD = CD,∴EB =FD .∴四边形EBFD是平行四边形.
    例1 如图 ,在平行四边形ABCD 中,E,F 分别是AB,CD的中点.求证:四边形EBFD是平行四边形.
    例2 如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是平行四边形.
    证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△DBF中, AC=BD ,∠A=∠D, AE=DF ,∴△ACE ≌ △DBF(SAS),∴CE=BF,∠ACE=∠DBF,∴CE∥BF,∴四边形BFCE是平行四边形.
    【变式题】 如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.
    证明:(1)∵点C是AB的中点,∴AC=BC.在△ADC与△CEB中, AD=CE , CD=BE , AC=BC ,∴△ADC≌△CEB(SSS),(2)∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE.又∵CD=BE,∴四边形CBED是平行四边形.
    例3 如图,△ABC中,BD平分∠ABC,DF∥BC,EF∥AC,试问BF与CE相等吗?为什么?
    解:BF=CE.理由如下:∵DF∥BC,EF∥AC,∴四边形FECD是平行四边形,∠FDB=∠DBE,∴FD=CE.∵BD平分∠ABC,∴∠FBD=∠EBD,∴∠FBD=∠FDB.∴BF=FD.∴BF=CE.
    例4 如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.求证:四边形BCED′是平行四边形.
    证明:由题意得∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′.
    ∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴CE∥D′B,CE=D′B,∴四边形BCED′是平行四边形.
    此题利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,再结合平行四边形的判定及性质进行解题.
    1.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是 (  )A.AB∥CD,AB=CDB.AB∥CD,BC∥AD C.AB∥CD,BC=AD D.AB=CD,BC=AD
    2.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有 (  ) A.3种  B.4种  C.5种  D.6种
    3.在▱ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是 (  ) A.AF=CE B.AE=CF C.∠BAE=∠FCD D.∠BEA=∠FCE
    4. 已知四边形ABCD中,AB∥CD,AB=CD,周长为40cm,两邻边的比是3:2,则较大边的长度是 (  ) A.8cm B.10cm C.12cm D.14cm
    5.如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形共有____个.
    证明:∵四边形AEFD和EBCF都是平行四边形,∴AD∥ EF,AD=EF, EF∥ BC, EF=BC.∴AD∥ BC,AD=BC.∴四边形ABCD是平行四边形.
    6.四边形AEFD和EBCF都是平行四边形,求证:四边形ABCD 是平行四边形.
    7.如图,在▱ABCD中,E,F分别是AB,CD的中点,连接DE,EF,BF,写出图中除▱ABCD以外的所有的平行四边形.
    解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵E,F分别是AB,CD的中点,∴AE=BF=DE=FC,∴四边形ADFE是平行四边形,四边形EFCB是平行四边形,四边形BEDF是平行四边形.
    8.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t 的代数式表示: AP=___________; DP=__________; BQ=____________; CQ=__________;
    (2)当t为何值时,四边形APQB是平行四边形?
    解:根据题意有AP=tcm,CQ=2tcm,PD=(12-t)cm,BQ=(15-2t)cm.∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形.∴t=15-2t,解得t=5.∴t=5s时四边形APQB是平行四边形.
    解:∵AP=tcm,CQ=2tcm,AD=12cm,∴PD=AD-AP=(12-t)cm,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边形.即12-t=2t,解得t=4,∴当t=4s时,四边形PDCQ是平行四边形.
    (3)当t为何值时,四边形PDCQ是平行四边形?
    说一说1.平行四边形的判定定理有哪些?2.收获到什么解题技巧呢?

    相关课件

    初中数学人教版八年级下册18.1.2 平行四边形的判定完美版ppt课件:

    这是一份初中数学人教版八年级下册18.1.2 平行四边形的判定完美版ppt课件,文件包含18122《平行四边形的判定2》第2课时课件pptx、18122《平行四边形的判定2》第2课时导学案doc等2份课件配套教学资源,其中PPT共18页, 欢迎下载使用。

    初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定评优课ppt课件:

    这是一份初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定评优课ppt课件,共27页。PPT课件主要包含了平行四边形的性质,平行四边形的对边平行,平行四边形的对边相等,平行四边形的对角相等,平行四边形的邻角互补,连接AC,BCDA已知,∵AECF,又∵BODO,方法一等内容,欢迎下载使用。

    初中数学2.2.2平行四边形的判定优质ppt课件:

    这是一份初中数学2.2.2平行四边形的判定优质ppt课件,文件包含湘教版八下数学222平行四边形的判定2课件pptx、湘教版八下数学222平行四边形的判定2教案docx等2份课件配套教学资源,其中PPT共24页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map