高中数学10.1 随机事件与概率一等奖ppt课件
展开1.了解随机事件的包含、互斥、对立的含义,会判断两个随机事件是否互斥、对立.2.了解随机事件的并事件、交事件的含义,能进行随机事件的并、交运算.核心素养:数学抽象、数学运算
知识点二 并事件与交事件
知识点三 互斥事件和对立事件
1.若A,B表示随机事件,则A∩B与A∪B也表示事件.( )2.若两个事件是互斥事件,则这两个事件也是对立事件.( )3.若两个事件是对立事件,则这两个事件也是互斥事件.( )4.若事件A与B是互斥事件,则在一次试验中事件A和B至少有一个发生.( )
一、互斥事件和对立事件的判断
例1 某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事件B为“至少订一种报”,事件C为“至多订一种报”,事件D为“不订甲报”,事件E为“一种报也不订”.判断下列事件是否为互斥事件,如果是,判断它们是否为对立事件.(1)A与C;
解 由于事件C“至多订一种报”中可能只订甲报,即事件A与事件C有可能同时发生,故A与C不是互斥事件.
解 事件B“至少订一种报”与事件E“一种报也不订”是不可能同时发生的,故事件B与E是互斥事件.由于事件B和事件E必有一个发生,故B与E也是对立事件.
解 事件B“至少订一种报”中有可能只订乙报,即有可能不订甲报,也就是说事件B发生,事件D也可能发生,故B与D不是互斥事件.
解 事件B“至少订一种报”中有3种可能:“只订甲报”,“只订乙报”,“订甲、乙两种报”.事件C“至多订一种报”中有3种可能:“一种报也不订”“只订甲报”“只订乙报”.即事件B与事件C可能同时发生,故B与C不是互斥事件.
解 由(4)的分析可知,事件E“一种报也不订”仅仅是事件C的一种可能,事件C与事件E可能同时发生,故C与E不是互斥事件.
判断两个事件是否为互斥事件,主要看它们在一次试验中能否同时发生,若不能同时发生,则这两个事件是互斥事件,若能同时发生,则这两个事件不是互斥事件;判断两个事件是否为对立事件,主要看在一次试验中这两个事件是否同时满足两个条件:一是不能同时发生;二是必有一个发生.这两个条件同时成立,那么这两个事件是对立事件,只要有一个条件不成立,那么这两个事件就不是对立事件.
(1)从一批产品中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品不全是次品},则下列结论正确的序号有________.①A与B互斥;②B与C互斥;③A与C互斥;④A与B对立;⑤B与C对立.
解析 A={三件产品全不是次品}指的是三件产品都是正品,B={三件产品全是次品},C={三件产品不全是次品}包括一件次品,两件次品,三件全是正品三个事件,由此知:A与B是互斥事件,但不对立;A与C是包含关系,不是互斥事件,更不是对立事件;B与C是互斥事件,也是对立事件.所以正确结论的序号有①②⑤.
(2)有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向,事件“甲向南”与事件“乙向南”是A.互斥但非对立事件 B.对立事件C.非互斥事件 D.以上都不对
A解析 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.
例2 盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球2个白球},事件B={3个球中有2个红球1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.求:(1)事件D与A,B是什么样的运算关系?
解 对于事件D,可能的结果为:1个红球、2个白球或2个红球、1个白球,故D=A∪B.
(2)事件C与A的交事件是什么事件?
解 对于事件C,可能的结果为1个红球、2个白球或2个红球、1个白球或3个均为红球,故C∩A=A.
事件间的运算方法(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.
在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;
解 因为事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3.同理可得,事件E包含事件C1,C2,C3,C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.且易知事件C1与事件D1相等,即C1=D1.
(2)利用和事件的定义,判断上述哪些事件是和事件.
解 因为事件D2={出现的点数大于3}={出现4点或出现5点或出现6点},所以D2=C4∪C5∪C6(或D2=C4+C5+C6).同理可得,D3=C1+C2+C3+C4,E=C1+C2+C3+C4+C5+C6,F=C2+C4+C6,G=C1+C3+C5.
三、随机事件的表示及含义
例3 设A,B,C表示三个随机事件,试将下列事件用A,B,C表示出来.(1)三个事件都发生;
(2)三个事件至少有一个发生;
(3)A发生,B,C不发生;
(4)A,B都发生,C不发生;
(5)A,B至少有一个发生,C不发生;
清楚随机事件的运算与集合运算的对应关系有助于解决此类问题.
5个相同的小球,分别标上数字1,2,3,4,5,依次有放回的抽取两个小球.记事件A为“第一次抽取的小球上的数字为奇数”,事件B为“抽取的两个小球上的数字至少有一个是偶数”,事件C为“两个小球上的数字之和为偶数”,试用集合的形式表示A,B,C,A∩B,
解 总的样本空间为Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)},A={(1,1),(1,2),(1,3),(1,4),(1,5),(3,1),(3,2),(3,3),(3,4),(3,5),(5,1),(5,2),(5,3),(5,4),(5,5)},B={(1,2),(1,4),(2,1),(2,2),(2,3),(2,4),(2,5),(3,2),(3,4),(4,1),(4,2),(4,3),(4,4),(4,5),(5,2),(5,4)},C={(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5)}.
A∩B={(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)},
1.某人射击一次,设事件A为“击中环数小于4”,事件B为“击中环数大于4”,事件C为“击中环数不小于4”,事件D为“击中环数大于0且小于4”,则正确的关系是A.A与B为对立事件 B.B与C为互斥事件C.C与D为对立事件 D.B与D为互斥事件
2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为A.至多有2件次品 B.至多有1件次品C.至多有2件正品 D.至少有2件正品
B解析 至少有2件次品包含2,3,4,5,6,7,8,9,10件次品.共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.
3.(多选)设A,B是两个任意事件,下面关系正确的是A.A+B=A B.A+AB=AC. D.A(A+B)=A
BD解析 若A+B=A,则B⊆A,故A错误;由题知,AB⊆A∴A+AB=A,B正确;
∴A(A+B)=A,D正确.
4.甲、乙两人破译同一个密码,令甲、乙破译出密码分别为事件A,B,则 表示的含义是__________________,事件“密码被破译”可表示为______________.
5.从0,1,2,3,4,5中任取两个数字组成一个两位数.事件A表示组成的两位数是偶数,事件B表示组成的两位数中十位数字大于个位数字,则事件A∩B用样本点表示为__________________________.
{10,20,30,40,50,32,42,52,54}
1.知识清单:(1)事件的包含关系与相等关系.(2)并事件和交事件.(3)互斥事件和对立事件.2.方法归纳:列举法、Venn图法.3.常见误区:互斥事件和对立事件之间的关系易混淆.
高中数学10.1 随机事件与概率说课课件ppt: 这是一份高中数学10.1 随机事件与概率说课课件ppt,共24页。PPT课件主要包含了情境引入,课堂探究,应用举例,课堂练习,归纳总结,事件运算,事件关系等内容,欢迎下载使用。
人教A版 (2019)必修 第二册10.1 随机事件与概率背景图ppt课件: 这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率背景图ppt课件,共23页。
人教A版 (2019)必修 第二册10.1 随机事件与概率教学课件ppt: 这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率教学课件ppt,共25页。PPT课件主要包含了一定发生,A=B,至少有一个,A∪B,A+B,A∩B,不能同时发生,A∩B=∅,互为对立,A∪B=Ω等内容,欢迎下载使用。