重庆市开州区2022年中考二模数学试题含解析
展开这是一份重庆市开州区2022年中考二模数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,关于的叙述正确的是,关于x的不等式组的所有整数解是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.的相反数是 ( )
A.6 B.-6 C. D.
2.若关于x的不等式组只有5个整数解,则a的取值范围( )
A. B. C. D.
3.二次函数(a≠0)的图象如图所示,则下列命题中正确的是( )
A.a >b>c
B.一次函数y=ax +c的图象不经第四象限
C.m(am+b)+b<a(m是任意实数)
D.3b+2c>0
4.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为( )
A.48° B.40° C.30° D.24°
5.关于的叙述正确的是( )
A.= B.在数轴上不存在表示的点
C.=± D.与最接近的整数是3
6.如图,已知是中的边上的一点,,的平分线交边于,交于,那么下列结论中错误的是( )
A.△BAC∽△BDA B.△BFA∽△BEC
C.△BDF∽△BEC D.△BDF∽△BAE
7.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是( )
A. B. C. D.
8.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A.(2,2),(3,2) B.(2,4),(3,1)
C.(2,2),(3,1) D.(3,1),(2,2)
9.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A. B.
C. D.
10.关于x的不等式组的所有整数解是( )
A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,2
二、填空题(共7小题,每小题3分,满分21分)
11.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.
12.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.
13.使有意义的的取值范围是__________.
14.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为______.
15.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
16.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
17.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.
三、解答题(共7小题,满分69分)
18.(10分)解不等式组,并写出其所有的整数解.
19.(5分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
20.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
21.(10分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.
22.(10分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.
(1)求温馨提示牌和垃圾箱的单价各是多少元?
(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
23.(12分) (1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.
(2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.
24.(14分)如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据相反数的定义解答即可.
【详解】
根据相反数的定义有:的相反数是.
故选D.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
2、A
【解析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.
【详解】
解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,
故选:A
【点睛】
本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.
3、D
【解析】
解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;
B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;
C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;
D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②
①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;
故选D.
点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
4、D
【解析】
解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故选D.
点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
5、D
【解析】
根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.
【详解】
选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;
选项D,与最接近的整数是=1.
故选D.
【点睛】
本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.
6、C
【解析】
根据相似三角形的判定,采用排除法,逐项分析判断.
【详解】
∵∠BAD=∠C,
∠B=∠B,
∴△BAC∽△BDA.故A正确.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴△BFA∽△BEC.故B正确.
∴∠BFA=∠BEC,
∴∠BFD=∠BEA,
∴△BDF∽△BAE.故D正确.
而不能证明△BDF∽△BEC,故C错误.
故选C.
【点睛】
本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.
7、B
【解析】
试题解析:如图所示:
设BC=x,
∵在Rt△ABC中,∠B=90°,∠A=30°,
∴AC=2BC=2x,AB=BC=x,
根据题意得:AD=BC=x,AE=DE=AB=x,
作EM⊥AD于M,则AM=AD=x,
在Rt△AEM中,cos∠EAD=;
故选B.
【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.
8、C
【解析】
直接利用位似图形的性质得出对应点坐标乘以得出即可.
【详解】
解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
∴端点的坐标为:(2,2),(3,1).
故选C.
【点睛】
本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
9、D
【解析】
分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
【详解】
阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
即:a2﹣b2=(a+b)(a﹣b).
所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
故选:D.
【点睛】
考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
10、B
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.
【详解】
解不等式﹣2x<4,得:x>﹣2,
解不等式3x﹣5<1,得:x<2,
则不等式组的解集为﹣2<x<2,
所以不等式组的整数解为﹣1、0、1,
故选:B.
【点睛】
考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、7
【解析】
首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.
【详解】
根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,
∴,
∴最多是7个,
故答案为:7.
【点睛】
本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.
12、
【解析】
【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.
【详解】∵AB=AC,∠A=36°,
∴∠B=∠ACB==72°,
∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,
∴AE=CE,∠A=∠ECA=36°,
∴∠CEB=72°,
∴BC=CE=AE=,
故答案为.
【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.
13、
【解析】
根据二次根式的被开方数为非负数求解即可.
【详解】
由题意可得:,解得:.
所以答案为.
【点睛】
本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.
14、
【解析】
试题分析:将4400000用科学记数法表示为:4.4×1.
故答案为4.4×1.
考点:科学记数法—表示较大的数.
15、.
【解析】
试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.
【点睛】
本题考查概率公式,掌握图形特点是解题关键,难度不大.
16、55.
【解析】
试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C
∴∠ACA’=35°,∠A =∠A’,.
∵∠A’DC=90°,
∴∠A’ =55°.
∴∠A=55°.
考点:1.旋转的性质;2.直角三角形两锐角的关系.
17、或
【解析】
根据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+.
【详解】
如图①,当四边形ABCE为平行四边形时,
作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.
∵AB=BC,
∴四边形ABCE是菱形.
∵∠BAD=∠BCD=90°,∠ABC=150°,
∴∠ADC=30°,∠BAN=∠BCE=30°,
∴∠NAD=60°,
∴∠AND=90°.
设BT=x,则CN=x,BC=EC=2x.
∵四边形ABCE面积为2,
∴EC·BT=2,即2x×x=2,解得x=1,
∴AE=EC=2,EN= ,
∴AN=AE+EN=2+ ,
∴CD=AD=2AN=4+2.
如图②,当四边形BEDF是平行四边形,
∵BE=BF,
∴平行四边形BEDF是菱形.
∵∠A=∠C=90°,∠ABC=150°,
∴∠ADB=∠BDC=15°.
∵BE=DE,
∴∠EBD=∠ADB=15°,
∴∠AEB=30°.
设AB=y,则DE=BE=2y,AE=y.
∵四边形BEDF的面积为2,
∴AB·DE=2,即2y2=2,解得y=1,
∴AE=,DE=2,
∴AD=AE+DE=2+.
综上所述,CD的值为4+2或2+.
【点睛】
考核知识点:平行四边形的性质,菱形判定和性质.
三、解答题(共7小题,满分69分)
18、不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.
【解析】
先求出不等式组的解集,即可求得该不等式组的整数解.
【详解】
由①得,x≥1,
由②得,x<2.
所以不等式组的解集为1≤x<2,
该不等式组的整数解为1,2,1.
【点睛】
本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
19、塔杆CH的高为42米
【解析】
作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE可得关于x的方程,解之可得.
【详解】
解:如图,作BE⊥DH于点E,
则GH=BE、BG=EH=4,
设AH=x,则BE=GH=GA+AH=23+x,
在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,
∴CE=CH﹣EH=tan55°•x﹣4,
∵∠DBE=45°,
∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,
解得:x≈30,
∴CH=tan55°•x=1.4×30=42,
答:塔杆CH的高为42米.
【点睛】
本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
20、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
21、可以求出A、B之间的距离为111.6米.
【解析】
根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.
【详解】
解:∵,(对顶角相等),
∴,
∴,
∴,
解得米.
所以,可以求出、之间的距离为米
【点睛】
考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.
22、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析
【解析】
(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;
(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.
【详解】
(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,
根据题意得,2x+3×3x=550,
∴x=50,
经检验,符合题意,
∴3x=150元,
即:温馨提示牌和垃圾箱的单价各是50元和150元;
(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,
根据题意得,意,
∴
∵y为正整数,
∴y为50,51,52,共3中方案;
有三种方案:①温馨提示牌50个,垃圾箱50个,
②温馨提示牌51个,垃圾箱49个,
③温馨提示牌52个,垃圾箱48个,
设总费用为w元
W=50y+150(100﹣y)=﹣100y+15000,
∵k=-100,∴w随y的增大而减小
∴当y=52时,所需资金最少,最少是9800元.
【点睛】
此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.
23、 (1)3;(2) x﹣y,1.
【解析】
(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
(1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018
=3×+2-+3-1-1,
=+2−+3-1-1,
=3;
(2)(x﹣)÷,
=,
=
=x-y,
当x=,y=-1时,原式=−+1=1.
【点睛】
本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.
24、 (1)见解析;(2)2.
【解析】
(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.
【详解】
(1)如图所示,点P即为所求.
(2)设BP=x,则CP=1﹣x,
由(1)中作图知AP=CP=1﹣x,
在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,
解得:x=2,
所以BP=2.
【点睛】
考核知识点:勾股定理和线段垂直平分线.
相关试卷
这是一份重庆市开州区开州区德阳初级中学2023-2024学年九年级上册期中数学试题(含解析),共24页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
这是一份重庆市开州区开州区文峰教育集团2023-2024学年七年级上册12月月考数学试题(含解析),共15页。
这是一份重庆市开州区2021-2022学年中考五模数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中,正确的是,函数y=自变量x的取值范围是,下列运算,结果正确的是等内容,欢迎下载使用。