搜索
    上传资料 赚现金
    英语朗读宝

    重庆市新店重点达标名校2022年中考数学猜题卷含解析

    重庆市新店重点达标名校2022年中考数学猜题卷含解析第1页
    重庆市新店重点达标名校2022年中考数学猜题卷含解析第2页
    重庆市新店重点达标名校2022年中考数学猜题卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市新店重点达标名校2022年中考数学猜题卷含解析

    展开

    这是一份重庆市新店重点达标名校2022年中考数学猜题卷含解析,共20页。试卷主要包含了﹣2的绝对值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.(﹣1)0+|﹣1|=(  )
    A.2 B.1 C.0 D.﹣1
    2.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是(  )

    A.130° B.120° C.110° D.100°
    3.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是(  )

    A.①②③ B.①②④ C.①③④ D.①②③④
    4.如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是(  )

    A. B. C. D.
    5.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:
    年龄(岁)
    12
    13
    14
    15
    人数(个)
    2
    4
    6
    8
    根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )
    A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15
    6.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )

    A. B. C. D.
    7.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是( )
    A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2
    8.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )
    A.相交 B.内切 C.外离 D.内含
    9.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
    ①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
    ②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
    ③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    ④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    A.③ B.①③ C.②④ D.①③④
    10.﹣2的绝对值是( )
    A.2 B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.

    12.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F, DE=2,则EF:BE= ________ 。
    13.如图,⊙O的直径CD垂直于AB,∠AOC=48°,则∠BDC=  度.
    14.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=_____.
    15.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.

    16.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=–1,P为抛物线上第二象限的一个动点.
    (1)求抛物线的解析式并写出其顶点坐标;
    (2)当点P的纵坐标为2时,求点P的横坐标;
    (3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.

    18.(8分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.

    (1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;
    (2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;
    (3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.
    19.(8分)观察下列各个等式的规律:
    第一个等式:=1,第二个等式: =2,第三个等式:=3…
    请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.
    20.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
    A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
    根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:
    请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
    21.(8分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5
    (1)求BC的长;
    (2)如果两条对角线长的和是20,求三角形△AOD的周长.

    22.(10分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.

    (1)求反比例函数和一次函数的解析式;
    (2)请连结,并求出的面积;
    (3)直接写出当时,的解集.
    23.(12分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.

    24.珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据绝对值和数的0次幂的概念作答即可.
    【详解】
    原式=1+1=2
    故答案为:A.
    【点睛】
    本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.
    2、D
    【解析】
    分析:先根据圆内接四边形的性质得到 然后根据圆周角定理求
    详解:∵


    故选D.
    点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
    3、D
    【解析】
    根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.
    【详解】
    E点有4中情况,分四种情况讨论如下:
    由AB∥CD,可得∠AOC=∠DCE1=β
    ∵∠AOC=∠BAE1+∠AE1C,
    ∴∠AE1C=β-α
    过点E2作AB的平行线,由AB∥CD,
    可得∠1=∠BAE2=α,∠2=∠DCE2=β
    ∴∠AE2C=α+β
    由AB∥CD,可得∠BOE3=∠DCE3=β
    ∵∠BAE3=∠BOE3+∠AE3C,
    ∴∠AE3C=α-β
    由AB∥CD,可得
    ∠BAE4+∠AE4C+∠DCE4=360°,
    ∴∠AE4C=360°-α-β
    ∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.

    【点睛】
    此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.
    4、A
    【解析】
    利用平行线的判定方法判断即可得到结果.
    【详解】
    ∵∠1=∠2,
    ∴AB∥CD,选项A符合题意;
    ∵∠3=∠4,
    ∴AD∥BC,选项B不合题意;
    ∵∠D=∠5,
    ∴AD∥BC,选项C不合题意;
    ∵∠B+∠BAD=180°,
    ∴AD∥BC,选项D不合题意,
    故选A.
    【点睛】
    此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
    5、B
    【解析】
    根据加权平均数、众数、中位数的计算方法求解即可.
    【详解】

    15出现了8次,出现的次数最多,故众数是15,
    从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.
    故选B.
    【点睛】
    本题考查了平均数、众数与中位数的意义.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
    6、C
    【解析】
    试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.
    故选C.
    考点:三视图
    7、B
    【解析】
    分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.
    【详解】
    ∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,
    ∴y1==6,y2==3,y3==-2,
    ∵﹣2<3<6,
    ∴y3<y2<y1,
    故选B.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.
    8、A
    【解析】
    试题分析:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,
    ∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.
    故选A.
    考点:圆与圆的位置关系.
    9、A
    【解析】

    (1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;
    (2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;
    (3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
    (4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
    综上所述,四种说法中正确的是③.
    故选A.
    10、A
    【解析】
    分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、113407, 北京市近两年的专利授权量平均每年增加6458.5件.
    【解析】
    依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.
    【详解】
    解:∵北京市近两年的专利授权量平均每年增加:(件),
    ∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),
    故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.
    【点睛】
    此题考查统计图的意义,解题的关键在于看懂图中数据.
    12、4:7或2:5
    【解析】
    根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.
    【详解】
    解:当E在线段CD上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=2k,BF=3k
    ∴BE=BF+EF=5k
    ∴EF:BE=2k∶5k=2∶5
    当当E在线段CD的延长线上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=4k,BF=3k
    ∴BE=BF+EF=7k
    ∴EF:BE=4k∶7k=4∶7
    故答案为:4:7或2:5.
    【点睛】
    本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.
    13、20
    【解析】
    解:连接OB,
    ∵⊙O的直径CD垂直于AB,
    ∴=,
    ∴∠BOC=∠AOC=40°,
    ∴∠BDC=∠AOC=×40°=20°
    14、
    【解析】
    根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.
    【详解】
    解:∵,
    ∴∠A=60°,
    ∴.
    故答案为.
    【点睛】
    本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.
    15、
    【解析】
    试题分析:上方的正六边形涂红色的概率是,故答案为.
    考点:概率公式.
    16、1
    【解析】
    解:连接OC,
    ∵AB为⊙O的直径,AB⊥CD,
    ∴CE=DE=CD=×6=3,
    设⊙O的半径为xcm,
    则OC=xcm,OE=OB﹣BE=x﹣1,
    在Rt△OCE中,OC2=OE2+CE2,
    ∴x2=32+(x﹣1)2,
    解得:x=1,
    ∴⊙O的半径为1,
    故答案为1.

    【点睛】
    本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)二次函数的解析式为,顶点坐标为(–1,4);(2)点P横坐标为––1;(3)当时,四边形PABC的面积有最大值,点P().
    【解析】
    试题分析: (1)已知抛物线 与轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=﹣1,由此列出方程组,解方程组求得a、b、c的值,即可得抛物线的解析式,把解析式化为顶点式,直接写出顶点坐标即可;(2)把y=2代入解析式,解方程求得x的值,即可得点P的横坐标,从而求得点P的坐标;(3)设点P(,),则 ,根据得出四边形PABC与x之间的函数关系式,利用二次函数的性质求得x的值,即可求得点P的坐标.
    试题解析:
    (1)∵抛物线 与轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=﹣1,
    ∴ , 解得:,
    ∴二次函数的解析式为 =,
    ∴顶点坐标为(﹣1,4)
    (2)设点P(,2),
    即=2,
    解得=﹣1(舍去)或=﹣﹣1,
    ∴点P(﹣﹣1,2).
    (3)设点P(,),则 ,
    ,
    ∴ =
    ∴当时,四边形PABC的面积有最大值.
    所以点P().
    点睛:本题是二次函数综合题,主要考查学生对二次函数解决动点问题综合运用能力,动点问题为中考常考题型,注意培养数形结合思想,培养综合分析归纳能力,解决这类问题要会建立二次函数模型,利用二次函数的性质解决问题.
    18、(1)25π;(2)点B的坐标为或;(3)m≤-5或m≥2
    【解析】
    (1)根据勾股定理,可得AB的长,根据圆的面积公式,可得答案;
    (2)根据确定圆,可得l与⊙A相切,根据圆的面积,可得AB的长为3,根据等腰直角三角形的性质,可得,可得答案;
    (3)根据圆心与直线垂直时圆心到直线的距离最短,根据确定圆的面积,可得PB的长,再根据30°的直角边等于斜边的一半,可得CA的长.
    【详解】
    (1)(1)∵A的坐标为(−1,0),B的坐标为(3,3),
    ∴AB==5,
    根据题意得点A,B的“确定圆”半径为5,
    ∴S圆=π×52=25π.
    故答案为25π;
    (2)∵直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积
    为9π,
    ∴⊙A的半径AB=3且直线y=x+b与⊙A相切于点B,如图,
    ∴AB⊥CD,∠DCA=45°.

    ①当b>0时,则点B在第二象限.
    过点B作BE⊥x轴于点E,
    ∵在Rt△BEA中,∠BAE=45°,AB=3,
    ∴.
    ∴.
    ②当b<0时,则点B'在第四象限.
    同理可得.
    综上所述,点B的坐标为或.
    (3)如图2,

    直线当y=0时,x=3,即C(3,0).
    ∵tan∠BCP=,
    ∴∠BCP=30°,
    ∴PC=2PB.
    P到直线的距离最小是PB=4,
    ∴PC=1.
    3-1=-5,P1(-5,0),
    3+1=2,P(2,0),
    当m≤-5或m≥2时,PD的距离大于或等于4,点A,B的“确定圆”的面积都不小于9π.
    点A,B的“确定圆”的面积都不小于9π,m的范围是m≤-5或m≥2.
    【点睛】
    本题考查了一次函数综合题,解(1)的关键是利用勾股定理得出AB的长;解(2)的关键是等腰直角三角形的性质得出;解(3)的关键是利用30°的直角边等于斜边的一半得出PC=2PB.
    19、(1)=4;(2)=n.
    【解析】
    试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;
    (2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.
    试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;
    (2)第n个等式是:=n.证明如下:
    ∵= = =n
    ∴第n个等式是:=n.
    点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.
    20、(1)详见解析;(2)72°;(3)
    【解析】
    (1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
    (2)用360°乘以C类别人数所占比例即可得;
    (3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
    【详解】
    解:(1)∵ 抽 查的总人数为:(人)
    ∴ 类人数为:(人)
    补全条形统计图如下:

    (2)“碳酸饮料”所在的扇形的圆心角度数为:
    (3)设男生为、,女生为、、,
    画树状图得:

    ∴恰好抽到一男一女的情况共有12 种,分别是
    ∴ (恰好抽到一男一女).
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    21、 (1)8;(2)1.
    【解析】
    (1)由平行四边形的性质和已知条件易证△AOE≌△COF,所以可得AE=CF=3,进而可求出BC的长;
    (2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形△AOD的周长.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AD∥BC,AO=CO,
    ∴∠EAO=∠FCO,
    在△AOE和△COF中

    ∴△AOE≌△COF,
    ∴AE=CF=3,
    ∴BC=BF+CF=5+3=8;
    (2)∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,AD=BC=8,
    ∵AC+BD=20,
    ∴AO+BO=10,
    ∴△AOD的周长=AO+BO+AD=1.
    【点睛】
    本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.
    22、(1),;(2)4;(3).
    【解析】
    (1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
    (2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
    (3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.
    【详解】
    解:(1)如图,连接,,
    ∵⊙C与轴,轴相切于点D,,且半径为,
    ,,
    ∴四边形是正方形,

    ,点,
    把点代入反比例函数中,
    解得:,
    ∴反比例函数解析式为:,
    ∵点在反比例函数上,
    把代入中,可得,

    把点和分别代入一次函数中,
    得出:,
    解得:,
    ∴一次函数的表达式为:;
    (2)如图,连接,
    ,点的横坐标为,
    的面积为:;
    (3)由,根据图象可知:当时,的解集为:.

    【点睛】
    本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.
    23、这栋楼的高度BC是米.
    【解析】
    试题分析:在直角三角形ADB中和直角三角形ACD中,根据锐角三角函数中的正切可以分别求得BD和CD的长,从而可以求得BC的长.
    试题解析:
    解:∵°,°,°,AD=100,

    ∴在Rt中,,
    在Rt中,.
    ∴.
    点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.
    24、技术改进后每天加工1个零件.
    【解析】
    分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.
    详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,
    根据题意可得, 解得x=100,
    经检验x=100是原方程的解,则改进后每天加工1.
    答:技术改进后每天加工1个零件.
    点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.

    相关试卷

    重庆市巫溪县重点达标名校2022年中考猜题数学试卷含解析:

    这是一份重庆市巫溪县重点达标名校2022年中考猜题数学试卷含解析,共21页。试卷主要包含了关于x的方程=无解,则k的值为等内容,欢迎下载使用。

    安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析:

    这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。

    2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析:

    这是一份2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析,共19页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map