- 专题 18.39 平行四边形中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版) 试卷 2 次下载
- 专题 18.38 平行四边形中考真题专练(巩固篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版) 试卷 2 次下载
- 专题 18.36 特殊平行四边形动点问题专题训练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版) 试卷 2 次下载
- 专题 18.35 特殊平行四边形动点问题专题训练(巩固篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版) 试卷 2 次下载
- 专题 18.34 特殊平行四边形动点问题专题训练(基础篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版) 试卷 2 次下载
专题 18.37 平行四边形中考真题专练(基础篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版)
展开专题 18.37 平行四边形中考真题专练(基础篇)(专项练习)
一、单选题
1.(2021·湖南株洲·中考真题)如图所示,四边形是平行四边形,点在线段的延长线上,若,则( )
A. B. C. D.
2.(2021·湖北荆门·中考真题)如图,将一副三角板在平行四边形ABCD中作如下摆放,设,那么( )
A. B. C. D.
3.(2020·湖南衡阳·中考真题)如图,在四边形ABCD中,AC与BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A.AB∥DC,AB=DC B.AB=DC,AD=BC
C.AB∥DC,AD=BC D.OA=OC,OB=OD
4.(2020·浙江温州·中考真题)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为( )
A.40° B.50° C.60° D.70°
5.(2020·山东临沂·中考真题)如图,P是面积为S的内任意一点,的面积为,的面积为,则( )
A. B.
C. D.的大小与P点位置有关
6.(2020·广西玉林·中考真题)点D,E分别是三角形ABC的边AB,AC的中点,如图,
求证:且
证明:延长DE到F,使EF=DE,连接FC,DC,AF,
又AE=EC,则四边形ADCF是平行四边形,
接着以下是排序错误的证明过程;
①;
②;
③四边形DBCF是平行四边形;
④且
则正确的证明排序应是:( )
A.②③①④ B.②①③④ C.①③④② D.①③②④
7.(2020·湖南益阳·中考真题)如图,的对角线,交于点,若,,则的长可能是( )
A. B. C. D.
8.(2021·四川南充·中考真题)如图,点O是对角线的交点,EF过点O分别交AD,BC于点E,F.下列结论成立的是( )
A. B.
C. D.
9.(2021·天津·中考真题)如图,的顶点A,B,C的坐标分别是,则顶点D的坐标是( )
A. B. C. D.
10.(2021·湖北恩施·中考真题)如图,在中,,,,则的面积为( )
A.30 B.60 C.65 D.
11.(2021·四川宜宾·中考真题)下列说法正确的是( )
A.平行四边形是轴对称图形 B.平行四边形的邻边相等
C.平行四边形的对角线互相垂直 D.平行四边形的对角线互相平分
12.(2021·内蒙古呼伦贝尔·中考真题)如图,中,、交于点O,分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线,交于点E,交于点F,连接,若,的周长为14,则的长为( )
A.10 B.8 C.6 D.
13.(2021·贵州遵义·中考真题)如图,▱ABCD的对角线AC,BD相交于点O,则下列结论一定正确的是( )
A.OB=OD B.AB=BC C.AC⊥BD D.∠ABD=∠CBD
14.(2021·山东滨州·中考真题)如图,在中,BE平分∠ABC交DC于点E.若,则∠DEB的大小为( )
A.130° B.125° C.120° D.115°
二、填空题
15.(2020·浙江金华·中考真题)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是______°.
16.(2020·四川凉山·中考真题)如图,的对角线AC、BD相交于点O,交AD于点E,若OA=1,的周长等于5,则的周长等于__________.
17.(2020·黑龙江牡丹江·中考真题)如图,在四边形中,连接,.请你添加一个条件______________,使.(填一种情况即可)
18.(2020·黑龙江穆棱·中考真题)如图,在四边形ABCD中,AD//BC,在不添加任何辅助线的情况下,请你添加一个条件____,使四边形ABCD是平行四边形(填一个即可).
19.(2021·四川阿坝·中考真题)如图,在中,过点C作,垂足为E,若,则的度数为____.
20.(2021·山东临沂·中考真题)在平面直角坐标系中,的对称中心是坐标原点,顶点、的坐标分别是、,将沿轴向右平移3个单位长度,则顶点的对应点的坐标是___.
21.(2021·江西·中考真题)如图,将沿对角线翻折,点落在点处,交于点,若,,,,则的周长为______.
22.(2021·江苏常州·中考真题)如图,在平面直角坐标系中,四边形是平行四边形,其中点A在x轴正半轴上.若,则点A的坐标是__________.
23.(2021·湖南湘西·中考真题)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为、,若,,则的度数是____.
三、解答题
24.(2020·浙江衢州·中考真题)如图,在5×5的网格中,△ABC的三个顶点都在格点上.
(1)在图1中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.
(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).
25.(2020·江苏淮安·中考真题)如图,在平行四边形中,点、分别在、上,与相交于点,且.
(1)求证:≌;
(2)连接、,则四边形 (填“是”或“不是”)平行四边形.
26.(2020·湖北黄冈·中考真题)已知:如图,在中,点是的中点,连接并延长,交的延长线于点,求证:.
27.(2020·山东淄博·中考真题)已知:如图,E是▱ABCD的边BC延长线上的一点,且CE=BC.
求证:△ABC≌△DCE.
28.(2020·四川广安·中考真题)如图,在▱ABCD中,点E,F是对角线AC上的两点,且AF=CE,连接DE,BF.求证:DE∥BF.
29.(2021·广西桂林·中考真题)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.
(1)求证:∠1=∠2;
(2)求证:△DOF≌△BOE.
30.(2021·江苏宿迁·中考真题)在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面横线上,并完成证明过程.
已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上, (填写序号).
求证:BE=DF.
注:如果选择多个条件分别解答,按第一个解答计分.
参考答案
1.B
【解析】
【分析】
根据补角的定义求,再利用平行四边形对角相等的性质求解即可.
【详解】
∵
∴
∵四边形是平行四边形
∴.
故选:B.
【点拨】本题考查了补角的定义和平行四边形的性质.平行四边形的性质,对边相等,对角相等,对角相互相平分.
2.C
【解析】
【分析】
延长EG交AB于H,根据平行四边形与三角板的性质,,DC//AB,得到∠DEH=∠BHE=60°,再由平角的定义,计算出结果.
【详解】
解:如图,延长EG交AB于H,
∵∠BMF=∠BGE=90°,
∴MF//EH,
∴∠BFM=∠BHE,
∵,
∴∠BFM=∠BHE=60°,
∵在平行四边形ABCD中,DC//AB,
∴∠DEH=∠BHE=60°,
∵∠GEN=45°,
∴,
故选:C.
【点拨】本题主要考查平行四边形的性质与一副特殊三角形板的性质,关键在于作出辅助线,利用平行四边形的性质进行求解.
3.C
【解析】
【分析】
根据平行四边形的判定方法逐项分析即可.
【详解】
A. ∵ AB∥DC,AB=DC,∴四边形ABCD是平行四边形;
B. ∵ AB=DC,AD=BC,∴四边形ABCD是平行四边形;
C.等腰梯形ABCD满足 AB∥DC,AD=BC,但四边形ABCD是平行四边形;
D. OA=OC,OB=OD,∴四边形ABCD是平行四边形;
故选C.
【点拨】本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.
4.D
【解析】
【分析】
先根据等腰三角形的性质和三角形的内角和定理求出∠C的度数,再根据平行四边形的性质解答即可.
【详解】
解:∵∠A=40°,AB=AC,
∴∠ABC=∠C=70°,
∵四边形ABCD是平行四边形,
∴∠E=∠C=70°.
故选:D.
【点拨】本题考查了等腰三角形的性质、平行四边形的性质和三角形的内角和定理等知识,属于基础题型,熟练掌握等腰三角形和平行四边形的性质是解题关键.
5.C
【解析】
【分析】
过点P作AD的垂线PF,交AD于F,再延长FP交BC于点E,表示出S1+ S2,得到即可.
【详解】
解:如图,过点P作AD的垂线PF,交AD于F,再延长FP交BC于点E,
根据平行四边形的性质可知PE⊥BC,AD=BC,
∴S1=AD×PF,S2=BC×PE,
∴S1+ S2
=AD×PF+BC×PE
=AD×(PE+PE)
=AD×EF
=S,
故选C.
【点拨】本题考查了三角形的面积和平行四边形的性质,解题的关键是作出平行四边形过点P的高.
6.A
【解析】
【分析】
根据已经证明出四边形ADCF是平行四边形,则利用平行四边形的性质可得,可得,证出四边形DBCF是平行四边形,得出,且,即可得出结论且,对照题中步骤,即可得出答案.
【详解】
解:四边形ADCF是平行四边形,
,
,
四边形DBCF是平行四边形,
,且;
,
;
且;
对照题中四个步骤,可得②③①④正确;
故答案选:A.
【点拨】本题考查平行四边形性质与判定综合应用;当题中出现中点的时候,可以利用中线倍长的辅助线做法,证明平行四边形后要记得用平行四边形的性质继续解题.
7.D
【解析】
【分析】
先根据平行四边形的对角线互相平分得到OA、OB的长度,再根据三角形三边关系得到AB的取值范围,即可求解.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=AC=3,BO=BD=4,
在△AOB中,
4-3
故答案为:D.
【点拨】本题考查平行四边形的性质和三角形的三边关系,熟练掌握平行四边形的对角线互相平分是解题的关键.
8.A
【解析】
【分析】
首先可根据平行四边形的性质推出△AEO≌△CFO,从而进行分析即可.
【详解】
∵点O是对角线的交点,
∴OA=OC,∠EAO=∠CFO,
∵∠AOE=∠COF,
∴△AEO≌△CFO(ASA),
∴OE=OF,A选项成立;
∴AE=CF,但不一定得出BF=CF,
则AE不一定等于BF,B选项不一定成立;
若,则DO=DC,
由题意无法明确推出此结论,C选项不一定成立;
由△AEO≌△CFO得∠CFE=∠AEF,但不一定得出∠AEF=∠DEF,
则∠CFE不一定等于∠DEF,D选项不一定成立;
故选:A.
【点拨】本题考查平行四边形的性质,理解基本性质,利用全等三角形的判定与性质是解题关键.
9.C
【解析】
【分析】
根据平行四边形性质以及点的平移性质计算即可.
【详解】
解:∵四边形ABCD是平行四边形,
点B的坐标为(-2,-2),点C的坐标为(2,-2),
∴点B到点C为水平向右移动4个单位长度,
∴A到D也应向右移动4个单位长度,
∵点A的坐标为(0,1),
则点D的坐标为(4,1),
故选:C.
【点拨】本题主要考查平行四边形的性质,以及平移的相关知识点,熟知点的平移特点是解决本题的关键.
10.B
【解析】
【分析】
先根据平行四边形的性质可得,再利用勾股定理可得,然后利用平行四边形的面积公式即可得.
【详解】
解:四边形是平行四边形,,
,
,
,
则的面积为,
故选:B.
【点拨】本题考查了平行四边形的性质与面积公式、勾股定理,熟练掌握平行四边形的性质是解题关键.
11.D
【解析】
【分析】
根据平行四边形的性质,逐一判断各个选项,即可得到答案.
【详解】
解:A. 平行四边形是中心对称图形不是轴对称图形,故该选项错误,
B. 平行四边形的邻边不一定相等,故该选项错误,
C. 平行四边形的对角线互相平分,故该选项错误,
D. 平行四边形的对角线互相平分,故该选项正确.
故选D.
【点拨】本题主要考查平行四边形的性质,熟练掌握平行四边形的性质,是解题的关键.
12.B
【解析】
【分析】
由已知可得EA=EC,再根据三角形BCE的周长可以得到AB的长,从而得到CD的长 .
【详解】
解:由已知条件可知EF是AC的垂直平分线,所以EA=EC,
∵△BCE 的周长为14,
∴BC+CE+EB=14,
∴BC+EA+EB=14,
即BC+AB=14,
∵四边形ABCD为平行四边形,
∴DC=AB,BC=AD=6,
∴DC=14-BC=14-6=8,
故选B.
【点拨】本题考查平行四边形的综合应用,熟练掌握平行四边形的性质、线段垂直平分线的作图与性质是解题关键.
13.A
【解析】
【分析】
根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.
【详解】
解:平行四边形对角线互相平分,A正确,符合题意;
平行四边形邻边不一定相等,B错误,不符合题意;
平行四边形对角线不一定互相垂直,C错误,不符合题意;
平行四边形对角线不一定平分内角,D错误,不符合题意.
故选:A.
【点拨】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.
14.C
【解析】
【分析】
根据平行四边形的性质,可以得到AD∥BC,DC∥AB,然后即可得到∠A+∠ABC=180°,∠ABE+∠DEB=180°,再根据∠A=60°,BE平分∠ABC,即可得到∠DEB的度数.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,DC∥AB,
∴∠A+∠ABC=180°,∠ABE+∠DEB=180°,
∵∠A=60°,
∴∠ABC=120°,
∵BE平分∠ABC,
∴∠ABE=60°,
∴∠DEB=120°,
故选:C.
【点拨】本题考查平行四边形的性质、平行线的性质、角平分线的定义,利用数形结合的思想解答是解答本题的关键.
15.30
【解析】
【分析】
根据平行四边形的性质解答即可.
【详解】
解:四边形是平行四边形,
,
,
故答案为:30.
【点拨】此题考查平行四边形的性质和多边形的内角和,关键是根据平行四边形的邻角互补解答.
16.16
【解析】
【分析】
根据已知可得E为AD的中点,OE是△ABD的中位线,据此可求得AB,根据OA=1,的周长等于5,可求得具体的结果.
【详解】
∵四边形ABCD是平行四边形,AC、BD是对角线,
∴O为BD和AC的中点,
又∵,
∴,,E为AD的中点,
又∵OA=1,的周长等于5,
∴AE+OE=4,
∴,
∴的周长=.
故答案为16.
【点拨】本题主要考查了平行四边形的性质,结合三角形中位线定理判定是解题的关键.
17.AD=BC(答案不唯一)
【解析】
【分析】
根据平行四边形的判定和性质添加条件证明AB=CD.
【详解】
解:添加的条件:AD=BC,理由是:
∵∠ACB=∠CAD,
∴AD∥BC,
∵AD=BC,
∴四边形ABCD是平行四边形,
∴AB=CD.
【点拨】本题考查了平行四边形的判定和性质,掌握定理内容是解题的关键.
18.AD=BC(答案不唯一)
【解析】
【分析】
根据平行四边形的判定方法添加一个条件即可.
【详解】
解:根据一组对边平行且相等的四边形是平行四边形,可以添加条件AD=BC,
根据两组对边分别平行的四边形是平行四边形,可以添加条件AB∥DC,
本题只需添加一个即可,
故答案为:AD=BC(答案不唯一).
【点拨】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
19.50°
【解析】
【分析】
由平行四边形的性质得出∠B=∠EAD=40°,由角的互余关系得出∠BCE=90°-∠B即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠B=∠EAD=40°,
∵CE⊥AB,
∴∠BCE=90°-∠B=50°;
故答案为:50°.
【点拨】本题考查了平行四边形的性质和三角形的内角和;熟练掌握平行四边形的性质,求出∠B的度数是解决问题的关键.
20.(4,-1)
【解析】
【分析】
根据平行四边形的性质得到点C坐标,再根据平移的性质得到C1坐标.
【详解】
解:在平行四边形ABCD中,
∵对称中心是坐标原点,A(-1,1),B(2,1),
∴C(1,-1),
将平行四边形ABCD沿x轴向右平移3个单位长度,
∴C1(4,-1),
故答案为:(4,-1).
【点拨】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
21.4a+2b
【解析】
【分析】
根据题意并利用折叠的性质可得出∠ACE=∠ACB=2∠ECD,计算可得到∠ECD=20,∠ACE=∠ACB=40,利用三角形的外角性质得到∠CFD=∠D=80,再等角对等边即可求解.
【详解】
解:由折叠的性质可得:∠ACE=∠ACB,
∵∠ACE=2∠ECD,
∴∠ACE=∠ACB=2∠ECD,
∵四边形ABCD是平行四边形,
∴∠FAC=∠FCA,∠B+∠BCD=180,即∠B+∠ACE+∠ACB+∠ECD=180,
∴∠ECD=20,∠ACE=∠ACB=40=∠FAC,
∠CFD=∠FAC+∠FCA=80=∠B=∠D,
∴AF=CF=CD=a,即AD=a+b,
则▱ABCD的周长为2AD+2CD=4a+2b,
故答案为:4a+2b.
【点拨】本题考查了平行四边形的性质,折叠的性质,等腰三角形的性质,正确的识别图形是解题的关键.
22.(3,0)
【解析】
【分析】
根据平行四边形的性质,可知:OA=BC=3,进而即可求解.
【详解】
解:∵四边形是平行四边形,
∴OA=BC=3,
∴点A的坐标是(3,0),
故答案是:(3,0).
【点拨】本题主要考查平行四边形的性质以及点的坐标,掌握平行四边形的对边相等,是解题的关键.
23.40°
【解析】
【分析】
如图,由折叠的性质可得,进而可得,然后易得四边形是平行四边形,最后根据平行四边形的性质可求解.
【详解】
解:如图所示:
∵,
由折叠的性质可得,
∵,
∴,
∴,
∵,
∴四边形是平行四边形,
∴;
故答案为40°.
【点拨】本题主要考查平行四边形的性质与判定、平行线的性质及折叠的性质,熟练掌握平行四边形的性质与判定、平行线的性质及折叠的性质是解题的关键.
24.(1)见解析;(2)见解析
【解析】
【分析】
(1)根据平行四边形的定义画出图形即可(答案不唯一);
(2)利用数形结合的思想解决问题即可.
【详解】
解:(1)如图平行四边形ABDE即为所求(点D的位置还有6种情形可取),
;
(2)如图,直线l即为所求.
【点拨】本题考查了几何作图,平行四边形的定义,理解题意,按照要求作图是解题关键.
25.(1)证明过程见解析;(2)是,理由见解析;
【解析】
【分析】
(1)根据平行四边形的对边平行可得到内错角相等,再根据已知条件可利用ASA得到全等;
(2)由(1)可得到AF=EC,根据一组对边平行且相等的四边形式平行四边形即可得到答案;
【详解】
(1)∵四边形平行四边形,
∴AD∥BC,
∴,
根据题可知,,
在△AOF和△COE中,
,
∴≌.
(2)如图所示,
由(1)得≌,可得:
,
又∵,
∴四边形AECF是平行四边形.
【点拨】本题中主要考查了平行四边形的判定和性质,准确运用全等三角形的条件进行判断是解题的关键.
26.见解析
【解析】
【分析】
通过证明即可得证.
【详解】
证明:∵点是的中点,
.
在中,,
.
在和中,
,
.
【点拨】本题考查平行四边形的性质,全等三角形的判定与性质等内容,熟练运用平行四边形的性质及全等三角形的判定是解题的关键.
27.见解析
【解析】
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠B=∠DCE,
在△ABC和△DCE中,
∴△ABC≌△DCE(SAS).
由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出∠B=∠DCE,由SAS即可得出结论.本题考查了平行四边形的性质、全等三角形的判定与性质等知识;
【点评】熟练掌握平行四边形的性质和全等三角形的判定方法是解题的关键.
28.证明见解析
【解析】
【分析】
连接BE、DF和BD,BD与AC交于点O,根据平行四边形的性质可得BO=DO,AO=CO,从而可证OF=OE,然后根据平行四边形的判定定理即可证出四边形DEBF为平行四边形,从而证出结论.
【详解】
解:连接BE、DF和BD,BD与AC交于点O
∵四边形ABCD为平行四边形
∴BO=DO,AO=CO
∵AF=CE,
∴AF-AO=CE-CO
∴OF=OE
∴四边形DEBF为平行四边形
∴DE∥BF.
【点拨】此题考查的是平行四边形的判定及性质,掌握平行四边形的判定定理和性质定理是解题关键.
29.(1)证明见解析;(2)证明见解析.
【解析】
【分析】
(1)根据平行四边形的性质可得AB//CD,根据平行线的性质即可得结论;
(2)由(1)可知∠1=∠2,根据中点的性质可得OD=OB,利用AAS即可证明△DOF≌△BOE.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB//CD,
∴∠1=∠2.
(2)∵点O是对角线BD的中点,
∴OD=OB,
在△DOF和△BOE中,,
∴△DOF≌△BOE.
【点拨】本题考查平行四边形的性质及全等三角形的判定,熟练掌握相关性质及判定定理是解题关键.
30.见解析
【解析】
【分析】
若选②,即OE=OF;根据平行四边形的性质可得BO=DO,然后即可根据SAS证明△BOE≌△DOF,进而可得结论;若选①,即AE=CF;根据平行四边形的性质得出OE=OF后,同上面的思路解答即可;若选③,即BE∥DF,则∠BEO=∠DFO,再根据平行四边形的性质可证△BOE≌△DOF,于是可得结论.
【详解】
解:若选②,即OE=OF;
证明:∵四边形ABCD是平行四边形,
∴BO=DO,
∵OE=OF,∠BOE=∠DOF,
∴△BOE≌△DOF(SAS),
∴BE=DF;
若选①,即AE=CF;
证明:∵四边形ABCD是平行四边形,
∴BO=DO,AO=CO,
∵AE=CF,
∴OE=OF,
又∠BOE=∠DOF,
∴△BOE≌△DOF(SAS),
∴BE=DF;
若选③,即BE∥DF;
证明:∵四边形ABCD是平行四边形,
∴BO=DO,
∵BE∥DF;
∴∠BEO=∠DFO,
又∠BOE=∠DOF,
∴△BOE≌△DOF(AAS),
∴BE=DF;
【点拨】本题考查了平行四边形的性质和全等三角形的判定和性质,属于基本题型,熟练掌握平行四边形的性质和全等三角形的判定是关键.
初中数学人教版八年级下册17.1 勾股定理课时作业: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理课时作业</a>,共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版八年级下册17.1 勾股定理当堂检测题: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理当堂检测题</a>,共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题 18.40 特殊平行四边形中考真题专练(基础篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版): 这是一份专题 18.40 特殊平行四边形中考真题专练(基础篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。