|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题 18.42 特殊平行四边形中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版)
    立即下载
    加入资料篮
    专题 18.42 特殊平行四边形中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版)01
    专题 18.42 特殊平行四边形中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版)02
    专题 18.42 特殊平行四边形中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版)03
    还剩48页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题 18.42 特殊平行四边形中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版)

    展开
    这是一份专题 18.42 特殊平行四边形中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版),共51页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题 18.42 特殊平行四边形中考真题专练(培优篇)
    (专项练习)
    一、单选题
    1.(2019·浙江湖州·中考真题)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是(   )

    A. B. C. D.
    2.(2020·浙江台州·中考真题)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为(       )

    A. B. C. D.
    3.(2020·浙江·中考真题)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是(  )

    A.1 B. C. D.
    4.(2020·山东泰安·中考真题)如图,矩形中,相交于点O,过点B作交于点F,交于点M,过点D作交于点E,交于点N,连接.则下列结论:
    ①;②;
    ③;④当时,四边形是菱形.
    其中,正确结论的个数是(   )

    A.1个 B.2个 C.3个 D.4个
    5.(2020·山东泰安·中考真题)如图,点A,B的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为( )

    A. B. C. D.
    6.(2020·湖北恩施·中考真题)如图,正方形的边长为4,点在上且,为对角线上一动点,则周长的最小值为(       ).

    A.5 B.6 C.7 D.8
    7.(2020·内蒙古·中考真题)如图,在中,,,按以下步骤作图:(1)分别以点为圆心,以大于的长为半径作弧,两弧相交于两点(点M在的上方);(2)作直线交于点O,交于点D;(3)用圆规在射线上截取.连接,过点O作,垂足为F,交于点G.下列结论:
    ①;②;③;④若,则四边形的周长为25.其中正确的结论有(       )

    A.1个 B.2个 C.3个 D.4个
    8.(2020·山东东营·中考真题)如图,在正方形中,点是上一动点(不与重合) ,对角线相交于点过点分别作的垂线,分别交于点交于点.下列结论:①;②;③;④;⑤点在两点的连线上.其中正确的是(   )

    A.①②③④ B.①②③⑤ C.①②③④⑤ D.③④⑤
    9.(2021·安徽·中考真题)如图,在菱形ABCD中,,,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为(       )

    A. B. C. D.
    10.(2021·安徽·中考真题)在中,,分别过点B,C作平分线的垂线,垂足分别为点D,E,BC的中点是M,连接CD,MD,ME.则下列结论错误的是(       )
    A. B. C. D.
    11.(2021·黑龙江绥化·中考真题)如图所示,在矩形纸片中,,点分别是矩形的边上的动点,将该纸片沿直线折叠.使点落在矩形边上,对应点记为点,点落在处,连接与交于点.则下列结论成立的是(       )
    ①;
    ②当点与点重合时;
    ③的面积的取值范围是;
    ④当时,.

    A.①③ B.③④ C.②③ D.②④
    12.(2021·湖南衡阳·中考真题)如图,矩形纸片,点M、N分别在矩形的边、上,将矩形纸片沿直线折叠,使点C落在矩形的边上,记为点P,点D落在G处,连接,交于点Q,连接.下列结论:①四边形是菱形;②点P与点A重合时,;③的面积S的取值范围是.其中所有正确结论的序号是( )

    A.①②③ B.①② C.①③ D.②③
    二、填空题
    13.(2020·云南·中考真题)已知四边形是矩形,点是矩形的边上的点,且.若,,则的长是___.
    14.(2020·四川绵阳·中考真题)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为_____.

    15.(2020·辽宁盘锦·中考真题)如图,菱形的边长为4,,分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点,直线交于点,连接,则的长为____________.

    16.(2020·内蒙古鄂尔多斯·中考真题)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:
    ①点M位置变化,使得∠DHC=60°时,2BE=DM;
    ②无论点M运动到何处,都有DM=HM;
    ③在点M的运动过程中,四边形CEMD不可能成为菱形;
    ④无论点M运动到何处,∠CHM一定大于135°.
    以上结论正确的有_____(把所有正确结论的序号都填上).

    17.(2020·辽宁葫芦岛·中考真题)一张菱形纸片的边长为,高等于边长的一半,将菱形纸片沿直线折叠,使点与点重合,直线交直线于点,则的长为____________.
    18.(2020·西藏·中考真题)如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把沿PE折叠,得到,连接CF.若AB=10,BC=12,则CF的最小值为_____.

    19.(2021·云南·中考真题)已知的三个顶点都是同一个正方形的顶点,的平分线与线段交于点D.若的一条边长为6,则点D到直线的距离为__________.

    20.(2021·天津·中考真题)如图,正方形的边长为4,对角线相交于点O,点E,F分别在的延长线上,且,G为的中点,连接,交于点H,连接,则的长为________.

    21.(2021·浙江杭州·中考真题)如图是一张矩形纸片,点是对角线的中点,点在边上,把沿直线折叠,使点落在对角线上的点处,连接,.若,则_____度.

    22.(2021·辽宁丹东·中考真题)如图,在矩形中,连接,过点C作平分线的垂线,垂足为点E,且交于点F;过点C作平分线的垂线,垂足为点H,且交于点G,连接,若,,则线段的长度为_________.

    23.(2021·辽宁盘锦·中考真题)如图,四边形ABCD为矩形,AB=,AD=,点P为边AB上一点.以DP为折痕将△DAP翻折,点A的对应点为点A'.连结AA',AA' 交PD于点M,点Q为线段BC上一点,连结AQ,MQ,则AQ+MQ的最小值是________

    24.(2021·四川绵阳·中考真题)如图,在菱形中,,为中点,点在延长线上,、分别为、中点,,,则_____.

    三、解答题
    25.(2021·甘肃武威·中考真题)问题解决:如图1,在矩形中,点分别在边上,于点.
    (1)求证:四边形是正方形;
    (2)延长到点,使得,判断的形状,并说明理由.
    类比迁移:如图2,在菱形中,点分别在边上,与相交于点,,求的长.










    26.(2021·广西来宾·中考真题)【阅读理解】如图1,,的面积与的面积相等吗?为什么?

    解:相等,在和中,分别作,,垂足分别为,.



    四边形是平行四边形,

    又,,

    【类比探究】问题①,如图2,在正方形的右侧作等腰,,,连接,求的面积.

    解:过点作于点,连接.
    请将余下的求解步骤补充完整.
    【拓展应用】问题②,如图3,在正方形的右侧作正方形,点,,在同一直线上,,连接,,,直接写出的面积.




    27.(2021·辽宁盘锦·中考真题)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,N为EF的中点,连结NA,以NA,NF为邻边作□ANFG.连结DG,DN,将Rt△ECF绕点C顺时针方向旋转,旋转角为(0°≤≤360°).
    (1)如图1,当=0°时,DG与DN的关系为____________________;
    (2)如图2,当时,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;
    (3)在Rt△ECF旋转的过程中,当□ANFG的顶点G落在正方形ABCD的边上,且AB=12,EC=时,连结GN,请直接写出GN的长.








    28.(2021·甘肃兰州·中考真题)已知正方形,,为平面内两点.
    【探究建模】
    (1)如图1,当点在边上时,,且,,三点共线.求证:;
    【类比应用】
    (2)如图2,当点在正方形外部时,,,且,,三点共线.猜想并证明线段,,之间的数量关系;
    【拓展迁移】
    (3)如图3,当点在正方形外部时,,,,且,,三点共线,与交于点.若,,求的长.




















    参考答案
    1.D
    【解析】
    【分析】根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN,利用勾股定理即可求得.
    【详解】
    如图,为剪痕,过点作于.

    ∵将该图形分成了面积相等的两部分,
    ∴经过正方形对角线的交点,
    ∴.
    易证,
    ∴,
    而,
    ∴.
    在中, .
    故选D.
    【分析】本题考查了图形的剪拼,中心对称的性质,勾股定理的应用,熟练掌握中心对称的性质是解题的关键.
    2.D
    【解析】
    【分析】如图,过点M作MH⊥A'R于H,过点N作NJ⊥A'W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.
    【详解】
    解:如图,过点M作MH⊥A'R于H,过点N作NJ⊥A'W于J.

    由题意△EMN是等腰直角三角形,EM=EN=2,MN=
    ∵四边形EMHK是矩形,
    ∴EK= A'K=MH=1,KH=EM=2,
    ∵△RMH是等腰直角三角形,
    ∴RH=MH=1,RM=,同法可证NW=,
    题意AR=R A'= A'W=WD=4,
    ∴AD=AR+RM+MN+NW+DW=4++++4=.
    故答案为:D.
    【分析】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.
    3.B
    【解析】
    【分析】如图,连接DD',延长C'D'交AD于E,由菱形ABC'D',可得AB∥C'D',进一步说明∠ED'D=30°,得到菱形AE=AD;又由正方形ABCD,得到AB=AD,即菱形的高为AB的一半,然后分别求出菱形ABC'D'和正方形ABCD的面积,最后求比即可.
    【详解】
    解:如图:延长C'D'交AD于E
    ∵菱形ABC'D'
    ∴AB∥C'D'
    ∵∠D'AB=30°
    ∴∠A D'E=∠D'AB=30°
    ∴AE=AD
    又∵正方形ABCD
    ∴AB=AD,即菱形的高为AB的一半
    ∴菱形ABC′D′的面积为,正方形ABCD的面积为AB2.
    ∴菱形ABC′D′的面积与正方形ABCD的面积之比是.
    故答案为B.

    【分析】本题主要考出了正方形的性质、菱形的性质以及含30°直角三角形的性质,其中表示出菱形ABC′D′的面积是解答本题的关键.
    4.D
    【解析】
    【分析】通过判断△AND≌△CMB即可证明①,再判断出△ANE≌△CMF证明出③,再证明出△NFM≌△MEN,得到∠FNM=∠EMN,进而判断出②,通过 DF与EB先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE,即可知四边形为菱形.
    【详解】
    ∵BF⊥AC
    ∴∠BMC=90°
    又∵
    ∴∠EDO=∠MBO,DE⊥AC
    ∴∠DNA=∠BMC=90°
    ∵四边形ABCD为矩形
    ∴AD=BC,AD∥BC,DC∥AB
    ∴∠ADB=∠CBD
    ∴∠ADB-∠EDO=∠CBD-∠MBO即∠AND=∠CBM
    在△AND与△CMB

    ∴△AND≌△CMB(AAS)
    ∴AN=CM,DN=BM,故①正确.
    ∵AB∥CD
    ∴∠NAE=∠MCF
    又∵∠DNA=∠BMC=90°
    ∴∠ANE=∠CMF=90°
    在△ANE与△CMF中

    ∴△ANE≌△CMF(ASA)
    ∴NE=FM,AE=CF,故③正确.
    在△NFM与△MEN中

    ∴△NFM≌△MEN(SAS)
    ∴∠FNM=∠EMN
    ∴NF∥EM,故②正确.
    ∵AE=CF
    ∴DC-FC=AB-AE,即DF=EB
    又根据矩形性质可知DF∥EB
    ∴四边形DEBF为平行四边
    根据矩形性质可知OD=AO,
    当AO=AD时,即三角形DAO为等边三角形
    ∴∠ADO=60°
    又∵DN⊥AC
    根据三线合一可知∠NDO=30°
    又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°
    故DE=EB
    ∴四边形DEBF为菱形,故④正确.
    故①②③④正确
    故选D.
    【分析】本题矩形性质、全等三角形的性质与证明、菱形的判定,能够找对相对应的全等三角形是解题关键.
    5.B
    【解析】
    【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.
    【详解】
    解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM= ON+MN最大,
    ∵,
    则△ABO为等腰直角三角形,
    ∴AB=,N为AB的中点,
    ∴ON=,
    又∵M为AC的中点,
    ∴MN为△ABC的中位线,BC=1,
    则MN=,
    ∴OM=ON+MN=,
    ∴OM的最大值为
    故答案选:B.

    【分析】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大.
    6.B
    【解析】
    【分析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时的周长最小,利用勾股定理求出DE即可得到答案.
    【详解】
    连接ED交AC于一点F,连接BF,
    ∵四边形ABCD是正方形,
    ∴点B与点D关于AC对称,
    ∴BF=DF,
    ∴的周长=BF+EF+BE=DE+BE,此时周长最小,
    ∵正方形的边长为4,
    ∴AD=AB=4,∠DAB=90°,
    ∵点在上且,
    ∴AE=3,
    ∴DE=,
    ∴的周长=5+1=6,
    故选:B.

    【分析】此题考查正方形的性质:四条边都相等,四个角都是直角以及正方形的对称性质,还考查了勾股定理的计算,依据对称性得到连接DE交AC于点F是的周长有最小值的思路是解题的关键.
    7.D
    【解析】
    【分析】证明四边形ADBE是菱形,推出FG是△ACD的中位线,即可得到,由此判断①;根据菱形的性质得到AD=BD,再利用Rt△ACD得到,即可判断②;根据FG是△ACD的中位线,证得,即可判断③;设OA=x,则OF=9-x,根据,求出OA=5得到AB=10,BC=8,再根据,求出BD=,即可判断④.
    【详解】
    由题意知:MN垂直平分AB,
    ∴OA=OB,ED⊥AB,
    ∵OD=OE,
    ∴四边形ADBE是菱形,
    ∵,,
    ∴OF∥BC,AF=CF,
    ∴FG是△ACD的中位线,
    ∴,故①正确;
    ∵四边形ADBE是菱形,
    ∴AD=BD,
    在Rt△ACD中,,
    ∴ ,故②正确;
    ∵FG是△ACD的中位线,
    ∴点G是AD的中点,
    ∴,
    ∵,
    ∴,故③正确;
    ∵AC=6,
    ∴AF=3,
    设OA=x,则OF=9-x,
    ∵,
    ∴,
    解得x=5,
    ∴AB=10,
    ∴BC=8,
    ∵,
    ∴,
    解得BD=,
    ∴四边形的周长为.
    故选:D.
    【分析】此题考查了线段垂直平分线的作图方法,菱形的判定及性质定理,勾股定理,三角形的中位线的判定及性质,三角形中线的性质,这是一道四边形的综合题.
    8.B
    【解析】
    【分析】①根据题意及正方形的性质,即可判断;
    ②根据及正方形的性质,得ME=EP=AE=MP,同理可证PF=NF=NP,根据题意可证四边形OEPF为矩形,则OE=PF,则OE+AE=PF+PE=NF+ME=AO,AO=AC,故证明;
    ③根据四边形PEOF为矩形的性质,在直角三角形OPF中,使用勾股定理,即可判断;
    ④△BNF是等腰直角三角形,而P点是动点,无法保证△POF是等腰直角三角形,故④可判断;
    ⑤连接MO、NO,证明OP=OM=ON,根据直角三角形斜边中线等于斜边一半,即可证明.
    【详解】
    ∵四边形ABCD正方形,AC、BD为对角线,
    ∴∠MAE=∠EAP=45°,
    根据题意MP⊥AC,故∠AEP=∠AEM=90°, ∴∠AME=∠APE=45°,
    在三角形与中,

    ∴ASA,
    故①正确;
    ∴AE=ME=EP=MP,
    同理,可证△PBF≌△NBF,PF=FN=NP,
    ∵正方形ABCD中,AC⊥BD,
    又∵PM⊥AC,PN⊥BD,
    ∴∠PEO=∠EOF=∠PFO=90°,
    ∴四边形PEOF为矩形,
    ∴PF=OE,
    ∴OE+AE=PF+PE=NF+ME=AO,
    又∵ME=PE=MP,
    FP=FN=NP,OA=AC,
    ∴ PM+PN=AC,
    故②正确;
    ∵四边形PEOF为矩形,
    ∴PE=OF,
    在直角三角形OPF中,,
    ∴,
    故③正确;
    ∵△BNF是等腰直角三角形,而P点是动点,无法保证△POF是等腰直角三角形,
    故④错误;
    连接MO、NO,
    在△OEM和△OEP中,

    ∴△OEM≌△OEP,OM=OP,
    同理可证△OFP≌△OFN,OP=ON,
    又∵∠MPN=90°,
    OM=OP=ON,
    ∴M,N,P在以O为圆心,OP为半径的圆上,
    又∵∠MPN=90°,
    ∴MN是圆O的直径,
    ∴点在两点的连线上.
    故⑤正确.
    故选择B.
    【分析】本题主要考查几何综合问题,掌握正方形、矩形的判定和性质,全等三角形的判定和性质,勾股定理是解答本题的关键.
    9.A
    【解析】
    【分析】依次求出OE=OF=OG=OH,利用勾股定理得出EF和OE的长,即可求出该四边形的周长.
    【详解】
    ∵HF⊥BC,EG⊥AB,
    ∴∠BEO=∠BFO=90°,
    ∵∠A=120°,
    ∴∠B=60°,
    ∴∠EOF=120°,∠EOH=60°,
    由菱形的对边平行,得HF⊥AD,EG⊥CD,
    因为O点是菱形ABCD的对称中心,
    ∴O点到各边的距离相等,即OE=OF=OG=OH,
    ∴∠OEF=∠OFE=30°,∠OEH=∠OHE=60°,
    ∴∠HEF=∠EFG=∠FGH=∠EHG=90°,
    所以四边形EFGH是矩形;
    设OE=OF=OG=OH=x,
    ∴EG=HF=2x,,
    如图,连接AC,则AC经过点O,
    可得三角形ABC是等边三角形,
    ∴∠BAC=60°,AC=AB=2,
    ∴OA=1,∠AOE=30°,
    ∴AE=,
    ∴x=OE=
    ∴四边形EFGH的周长为EF+FG+GH+HE=,
    故选A.


    【分析】本题考查了菱形的性质、矩形的判定与性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等内容,要求学生在理解相关概念的基础上学会应用,能分析并综合运用相关条件完成线段关系的转换,考查了学生的综合分析与应用的能力.
    10.A
    【解析】
    【分析】设AD、BC交于点H,作于点F,连接EF.延长AC与BD并交于点G.由题意易证,从而证明ME为中位线,即,故判断B正确;又易证,从而证明D为BG中点.即利用直角三角形斜边中线等于斜边一半即可求出,故判断C正确;由、和可证明.再由、和可推出 ,即推出,即,故判断D正确;假设,可推出,即可推出.由于无法确定的大小,故不一定成立,故可判断A错误.
    【详解】
    如图,设AD、BC交于点H,作于点F,连接EF.延长AC与BD并交于点G.

    ∵AD是的平分线,,,
    ∴HC=HF,
    ∴AF=AC.
    ∴在和中,,
    ∴,
    ∴,∠AEC=∠AEF=90°,
    ∴C、E、F三点共线,
    ∴点E为CF中点.
    ∵M为BC中点,
    ∴ME为中位线,
    ∴,故B正确,不符合题意;
    ∵在和中,,
    ∴,
    ∴,即D为BG中点.
    ∵在中,,
    ∴,
    ∴,故C正确,不符合题意;
    ∵,,,
    ∴.
    ∵,,
    ∴,
    ∴.
    ∵AD是的平分线,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,故D正确,不符合题意;
    ∵假设,
    ∴,
    ∴在中,.
    ∵无法确定的大小,故原假设不一定成立,故A错误,符合题意.
    故选A.
    【分析】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含角的直角三角形的性质等知识,较难.正确的作出辅助线是解答本题的关键.
    11.D
    【解析】
    【分析】①根据题意可知四边形BFGE为菱形,所以EF⊥BG且BN=GN,若BN=AB,则BG=2AB=6,又因为点E是AD边上的动点,所以3 ②如图,过点E作EH⊥BC于点H,再利用勾股定理求解即可;
    ③当点E与点A重合时,的面积有最小值,当点G与点D重合时的面积有最大值.故<<.
    ④因为,则EG=BF=6-=.根据勾股定理可得ME= ,从而可求出△MEG的面积.
    【详解】
    解:①根据题意可知四边形BFGE为菱形,
    ∴EF⊥BG且BN=GN,
    若BN=AB,则BG=2AB=6,
    又∵点E是AD边上的动点,
    ∴3 故①错误;
    ②如图,过点E作EH⊥BC于点H,则EH=AB=3,
    在Rt△ABE中


    解得:AE=,
    ∴BF=DE=6-=.
    ∴HF=-=.
    在Rt△EFH中
    =;
    故②正确;

    ③当点E与点A重合时,如图所示,的面积有最小值= =,
    当点G与点D重合时的面积有最大值==.
    故<<.
    故③错误.

    ④因为,则EG=BF=6-=.根据勾股定理可得ME= ,
    ∴.
    故④正确.
    故选D.
    【分析】本题考查了矩形的性质和判定,菱形的判定与性质,勾股定理,翻折的性质等知识,掌握相关知识找到临界点是解题的关键.
    12.C
    【解析】
    【分析】根据矩形的性质与折叠的性质,证明出,,通过等量代换,得到PM=CN,则由一组邻边相等的平行四边形是菱形得到结论正确;用勾股定理,,由菱形的性质对角线互相垂直,再用勾股定理求出;当过点D时,最小面积,当P点与A点重合时,S最大为,得出答案.
    【详解】
    解:①如图1,


    ∵,
    ∴,
    ∵折叠,∴,NC=NP
    ∴,
    ∴,
    ∴PM=CN,
    ∴,
    ∴四边形为平行四边形,
    ∵,
    ∴平行四边形为菱形,
    故①正确,符合题意;
    ②当点P与A重合时,如图2所示


    设,则,
    在中,,
    即,
    解得:,
    ∴,,
    ∴,
    又∵四边形为菱形,
    ∴,且,

    ∴,
    故②错误,不符合题意.
    ③当过点D时,如图3所示:

    此时,最短,四边形的面积最小,则S最小为,
    当P点与A点重合时,最长,四边形的面积最大,则S最大为,
    ∴,故③正确,符合题意.
    故答案为:①③.
    【分析】本题主要考查了菱形的判定与性质、折叠问题、勾股定理的综合应用,熟练掌握菱形的判定定理与性质定理、勾股定理是解决本题的关键.
    13. 或
    【解析】
    【分析】根据,则在的中垂线上,作的中垂线交于 交于,所以:如图的都符合题意,先证明四边形是菱形,再利用菱形的性质与勾股定理可得答案.
    【详解】
    解: ,
    在的中垂线上,
    作的中垂线交于 交于,
    所以:如图的都符合题意,
    矩形






    四边形是菱形,

    ,, ,


    设 则





    的长为: 或

    故答案为: 或
    【分析】本题考查的是矩形的性质,菱形的判定与性质,勾股定理的应用,线段的垂直平分线的性质,掌握以上知识是解题的关键.
    14.
    【解析】
    【分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.
    【详解】
    解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.

    ∵∠AMD=90°,AD=4,OA=OD,
    ∴OM=AD=2,
    ∵AB∥CD,
    ∴∠GCF=∠B=60°,
    ∴∠DGO=∠CGE=30°,
    ∵AD=BC,
    ∴∠DAB=∠B=60°,
    ∴∠ADC=∠BCD=120°,
    ∴∠DOG=30°=∠DGO,
    ∴DG=DO=2,
    ∵CD=4,
    ∴CG=2,
    ∴OG=2,GF=,OF=3,
    ∴ME≥OF﹣OM=3﹣2,
    ∴当O,M,E共线时,ME的值最小,最小值为3﹣2.
    【分析】本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
    15.
    【解析】
    【分析】连接BE,由垂直平分线的性质和等腰直角三角形的性质,得BE=AE=, 再得∠EBC=90°,利用勾股定理即可求出CE的长度.
    【详解】
    解:连接BE,如图:

    由题意可知,MN垂直平分AB,
    ∴AE=BE,
    ∴,则∠AEB=90°,
    在等腰直角三角形ABE中,AB=4,
    ∴BE=AE=,
    ∵四边形ABCD为菱形,
    ∴AD∥BC,
    ∴∠EBC=∠AEB=90°,
    在Rt△BCE中,由勾股定理,则

    故答案为:.
    【分析】本题考查了菱形的性质,垂直平分线的性质,勾股定理,等腰三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确得到∠EBC=∠AEB=90°.
    16.①②③④
    【解析】
    【分析】①正确.证明∠ADM=30°,即可得出结论.
    ②正确.证明△DHM是等腰直角三角形即可.
    ③正确.首先证明四边形CEMD是平行四边形,再证明,DM>CD即可判断.
    ④正确.证明∠AHM<∠BAC=45°,即可判断.
    【详解】
    解:如图,连接DH,HM.

    由题可得,AM=BE,
    ∴AB=EM=AD,
    ∵四边形ABCD是正方形,EH⊥AC,
    ∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
    ∴EH=AH,
    ∴△MEH≌△DAH(SAS),
    ∴∠MHE=∠DHA,MH=DH,
    ∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
    ∴DM=HM,故②正确;
    当∠DHC=60°时,∠ADH=60°﹣45°=15°,
    ∴∠ADM=45°﹣15°=30°,
    ∴Rt△ADM中,DM=2AM,
    即DM=2BE,故①正确;
    ∵CD∥EM,EC∥DM,
    ∴四边形CEMD是平行四边形,
    ∵DM>AD,AD=CD,
    ∴DM>CD,
    ∴四边形CEMD不可能是菱形,故③正确,
    ∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,
    ∴∠AHM<∠BAC=45°,
    ∴∠CHM>135°,故④正确;
    由上可得正确结论的序号为①②③.
    故答案为:①②③④.
    【分析】本题考查正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考填空题中的压轴题.
    17.或
    【解析】
    【分析】先根据题目中描述画出两种可能的图形,再结合勾股定理即可得解.
    【详解】
    解:由题干描述可作出两种可能的图形.
    ①MN交DC的延长线于点F,如下图所示

    ∵高AE等于边长的一半

    在Rt△ADE中,
    又∵沿MN折叠后,A与B重合


    ②MN交DC的延长线于点F,如下图所示

    同理可得,,
    此时,
    故答案为:或.
    【分析】本题主要考查菱形的性质、折叠的性质、勾股定理等相关知识点,根据题意作出两种图形是解题关键.
    18.8
    【解析】
    【分析】点F在以E为圆心、EA为半径的圆上运动,当E、F、C共线时时,此时FC的值最小,根据勾股定理求出CE,再根据折叠的性质得到BE=EF=5即可.
    【详解】
    解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,

    根据折叠的性质,△EBP≌△EFP,
    ∴EF⊥PF,EB=EF,
    ∵E是AB边的中点,AB=10,
    ∴AE=EF=5,
    ∵AD=BC=12,
    ∴CE===13,
    ∴CF=CE﹣EF=13﹣5=8.
    故答案为8.
    【分析】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.
    19.3或或或
    【解析】
    【分析】将△ABC放入正方形中,分∠ABC=90°,∠BAC=90°,再分别分AB=BC=6,AC=6,进行解答.
    【详解】
    解:∵△ABC三个顶点都是同一个正方形的顶点,
    如图,若∠ABC=90°,
    则∠ABC的平分线为正方形ABCD的对角线,D为对角线交点,
    过点D作DF⊥AB,垂足为F,
    当AB=BC=6,
    则DF=BC=3;
    当AC=6,
    则AB=BC==,
    ∴DF=BC=;

    如图,若∠BAC=90°,过点D作DF⊥BC于F,
    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,AD=DF,
    又∠BAD=∠BFD=90°,BD=BD,
    ∴△BAD≌△BFD(AAS),
    ∴AB=BF,
    当AB=AC=6,
    则BC=,
    ∴BF=6,CF=,
    在正方形ABEC中,∠ACB=45°,
    ∴△CDF是等腰直角三角形,则CF=DF=AD=;
    当BC=6,
    则AB=AC==,
    同理可得:,

    综上:点D到直线AB的距离为:3或或或,
    故答案为:3或或或.
    【分析】本题考查了正方形的性质,角平分线的定义,等腰直角三角形的判定和性质,勾股定理,全等三角形的判定和性质,知识点较多,解题时要结合题意画出符合题意的图形,分情况解答.
    20.
    【解析】
    【分析】先作辅助线构造直角三角形,求出CH和MG的长,再求出MH的长,最后利用勾股定理求解即可.
    【详解】
    解:如图,作OK⊥BC,垂足为点K,
    ∵正方形边长为4,
    ∴OK=2,KC=2,
    ∴KC=CE,
    ∴CH是△OKE的中位线
    ∴,
    作GM⊥CD,垂足为点M,
    ∵G点为EF中点,
    ∴GM是△FCE的中位线,
    ∴,,
    ∴,
    在Rt△MHG中,,
    故答案为:.

    【分析】本题综合考查了正方形的性质、三角形中位线定理、勾股定理等内容,解决本题的关键是能作出辅助线构造直角三角形,得到三角形的中位线,利用三角形中位线定理求出相应线段的长,利用勾股定理解直角三角形等.
    21.18
    【解析】
    【分析】连接MD,设∠DAF=x,利用折叠与等腰三角形的性质,用x的代数式表示出∠ADC=90°,列出方程解方程即可.
    【详解】
    连接MD,设∠DAF=x
    根据矩形的基本性质可知AM=MD,AD∥BC,∠BCD=∠ADC=90°
    ∴∠MDA=∠DAF=x,∠ACB=∠DAC=x
    ∴∠DMF=2x
    ∵△DCE折叠得到△DFE
    ∴DF=CD=AB,DE⊥FC,∠FDE=∠CDE
    又MF=AB
    ∴MF=DF
    ∴∠MDF=2x
    ∵∠BCD=∠ACB+∠ACD=90°,∠EDC+∠FCD=90°
    ∴∠CDE=∠ACD=x
    ∴∠FDE=∠CDE=x
    ∴∠ADC=∠ADM+∠MDF+∠FDE+∠CDE=x+2x+x+x=5x=90°
    ∴x=18°
    故∠DAF=18°
    故答案为18.

    【分析】本题考查了矩形的折叠问题,能够做出合适的辅助线用∠DAF表示出∠ADC是解题关键.
    22.
    【解析】
    【分析】先证明,可得CE=FE,BF=,同理:CH=GH,DG=,从而得HE=,再利用勾股定理得BD=,进而即可求解.
    【详解】
    解:∵BE平分∠DBC,
    ∴∠CBE=∠FBE,
    ∵CF⊥BE,
    ∴∠BEC=∠BEF=90°,
    又∵BE=BE,
    ∴,
    ∴CE=FE,BF=
    同理:CH=GH,DG=,
    ∴HE是的中位线,
    ∴HE=,
    ∵在矩形中,,,
    ∴BD=,
    ∴GF= BF+ DG-BD=,
    ∴=.
    【分析】本题主要考查矩形的性质,勾股定理,全等三角形的判定和性质,中位线的性质,推出HE是的中位线,是解题的关键.
    23.
    【解析】
    【分析】如图,作点A关于BC的对称点T,取AD的中点R,连接BT,QT,RT,RM.想办法求出RM,RT,求出MT的最小值,再根据QA+QM=QM+QT≥MT,可得结论.
    【详解】
    解:如图,作点A关于BC的对称点T,
    取AD的中点R,连接BT,QT,RT,RM.

    ∵四边形ABCD是矩形,
    ∴∠RAT=90°,
    ∵AR=DR=,AT=2AB=4,
    ∴RT=,
    ∵A,A′关于DP对称,
    ∴AA′⊥DP,
    ∴∠AMD=90°,
    ∵AR=RD,
    ∴RM=AD=,
    ∵MT≥RT−RM,
    ∴MT≥4,
    ∴MT的最小值为4,
    ∵QA+QM=QT+QM≥MT,
    ∴QA+QM≥4,
    ∴QA+QM的最小值为4.
    故答案为:4.
    【分析】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是求出MT的最小值,属于中考常考题型.
    24.4
    【解析】
    【分析】连接CG,过点C作CM AD,交AD的延长线于M,利用平行线的性质和三角形中位线定理可得CG= 2HF= ,由ABCD,得CDM= A= 60°,设DM= x,则CD= 2x,CM=x,在Rt△CMG中,借助勾股定理得,即可求出x的值,从而解决问题.
    【详解】
    如图,连接CG,过点C作CM AD,交AD的延长线于M,

    F、H分别为CE、GE中点,
    FH是△CEG的中位线,
    HF=CG,
    四边形ABCD是菱形,
     ADBC,ABCD,
    DGE =E,
    EHF= DGE,
    E=EHF,
    HF = EF = CF,
    CG= 2HF =,
    ABCD,
    CDM= A = 60°,
    设DM= x,则CD= 2x,CM=x,
    点G为AD的中点,
    DG= x,GM=2x,
    在Rt△CMG中,由勾股定理得:

    x=2,
    AB = CD= 2x= 4.
    故答案为:4.
    【分析】本题主要考查了菱形的性质,三角形的中位线定理,勾股定理等知识,有一定综合性,作辅助线,构造直角三角形,利用方程思想是解题的关键.
    25.问题解决:(1)见解析;(2)等腰三角形,理由见解析;类比迁移:8
    【解析】
    【分析】问题解决:(1)证明矩形ABCD是正方形,则只需证明一组邻边相等即可.结合和可知,再利用矩形的边角性质即可证明,即,即可求解;
    (2)由(1)中结论可知,再结合已知,即可证明,从而求得是等腰三角形;
    类比迁移:由前面问题的结论想到延长到点,使得,结合菱形的性质,可以得到,再结合已知可得等边,最后利用线段BF长度即可求解.
    【详解】
    解:问题解决:
    (1)证明:如图1,∵四边形是矩形,





    又.
    ∴矩形是正方形.
    (2)是等腰三角形.理由如下:


    又,即是等腰三角形.
    类比迁移:
    如图2,延长到点,使得,连接.
    ∵四边形是菱形,




    又.
    是等边三角形,


    【分析】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.
    26.①;②.
    【解析】
    【分析】①过点作于点,连接,可得,根据材料可知,再由等腰三角形性质可知,即可求出;
    ②连接CE,证明,即可得,由此即可求解.
    【详解】
    解:①过点作于点,连接,

    ∵在正方形中,,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∵在正方形中,,
    ∴;
    ②,
    过程如下:如解图3,连接CE,

    ∵在正方形、正方形中,
    ∴,
    ∴,
    ∴,
    ∵在正方形中,,,
    ∴.
    【分析】本题主要考查了正方形性质和平行线判定和性质以及三角形面积,解题关键是理解阅读材料,根据平行线找到等底等高的三角形.
    27.(1)DG=DN,且DG⊥DN;(2)成立,理由见解析;(3)GN=或
    【解析】
    【分析】(1)如图1中,连接AE,AF,CN.证明△GAD≌△NCD(SAS),推出DG=DN,∠ADG=∠CDN,推出∠GDN=∠ADC=90°,可得结论;
    (2)如图2中,作直线EF交AD于J,交BC于K,连接CN.证明△GAD≌△NCD(SAS),推出DG=DN,∠ADG=∠CDN,推出∠GDN=∠ADC=90°,可得结论;
    (3)分两种情形:如图3-1中,当点G落在AD上时,如图3-2中,当点G落在AB上时,分别利用勾股定理求出GN即可.
    【详解】
    解:(1)如图1中,连接AE,AF,CN.

    ∵四边形ABCD是正方形,
    ∴AB=AD=CB=CD,∠B=∠ADF=90°,
    ∵CE=CF,
    ∴BE=DF,
    ∴△ABE≌△ADF(SAS),
    ∴AE=AF,
    ∵EN=NF,
    ∴AN⊥EF,CN=NF=EN,
    ∵CE=CF,EN=NF,
    ∴CN⊥EF,
    ∴A,N,C共线,
    ∵四边形ANFG是平行四边形,∠ANF=90°,
    ∴四边形ANFG是矩形,
    ∴AG=FN=CN,∠GAN=90°,
    ∵∠DCA=∠DAC=45°,
    ∴∠GAD=∠NCD=45°,
    ∴△GAD≌△NCD(SAS),
    ∴DG=DN,∠ADG=∠CDN,
    ∴∠GDN=∠ADC=90°,
    ∴DG⊥DN,DG=DN.
    故答案为:DG⊥DN,DG=DN;
    (2)结论成立.
    理由:如图2中,作直线EF交AD于J,交BC于K,连接CN.

    ∵四边形ANFG是平行四边形,
    ∴AG∥KJ,AG=NF,
    ∴∠DAG=∠J,
    ∵AJ∥BC,
    ∴∠J=∠CKE,
    ∵CE=CF,EN=NF,
    ∴CN=NE=NF=AG,CN⊥EF,
    ∴∠ECN=∠CEN=45°,
    ∴∠EKC+∠ECK=∠ECK+∠DCN,
    ∴∠DCN=∠CKE,
    ∴∠GAD=∠DCN,
    ∵GA=CN,AD=CD,
    ∴△GAD≌△NCD(SAS),
    ∴DG=DN,∠ADG=∠CDN,
    ∴∠GDN=∠ADC=90°,
    ∴DG⊥DN,DG=DN;
    (3)如图3-1中,当点G落在AD上时,

    ∵△ECN是等腰直角三角形,EC=5,
    ∴EN=CN=NF=5,
    ∵四边形ANFG是平行四边形,
    ∴AG=NF=5,
    ∵AD-CD=12,
    ∴DG=DN=7,
    ∴GN=7.
    如图3-2中,当点G落在AB上时,

    同法可证,CN=5,
    ∵△DAG≌△DCN,
    ∴AG=CN=5,
    ∴BG=AB-AG=7,BN=BC+CN=17,

    综上所述,满足条件的GN的值为或
    【分析】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
    28.(1)见解析;(2);理由见解析(3)
    【解析】
    【分析】(1)根据正方形性质以及题意证明即可得出结论;
    (2)根据已知条件证明,然后证明为等腰直角三角形即可得出结论;
    (3)先证明,得出为等腰直角三角形,根据勾股定理以及等腰直角三角形的性质求出的长度,即可得出结论.
    【详解】
    解:(1)∵四边形是正方形,,,三点共线,
    ∴,
    ∵,
    ∴,
    ∴,
    在和中,
    ,
    ∴,
    ∴;
    (2)∵,四边形是正方形,
    ∴,,
    ∴,
    ∵,,
    ∴,
    ∴,
    在和中,
    ,
    ∴,
    ∴,
    ∴为等腰直角三角形,
    ∴,
    即;
    (3)过点D作于点H,连接BD,

    ∵,
    ∵,
    ∴,
    ∵,
    ∴,
    在和中,
    ,
    ∴,
    ∴,,
    ∵且,
    ∴为等腰直角三角形,
    ∴,
    在中,,
    ∴,
    ∵是正方对角线,
    ∴,

    ∴,
    ∴为等腰直角三角形,
    ∴,
    ∴在中,,
    ∴.
    【分析】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形判定与性质,熟知性质定理是解本题的关键.
    相关试卷

    初中数学人教版八年级下册17.1 勾股定理课时作业: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理课时作业</a>,共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学人教版八年级下册17.1 勾股定理当堂检测题: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理当堂检测题</a>,共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题 18.41 特殊平行四边形中考真题专练(巩固篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版): 这是一份专题 18.41 特殊平行四边形中考真题专练(巩固篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版),共44页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题 18.42 特殊平行四边形中考真题专练(培优篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map