专题18.47 平行四边形几何模型——十字架模型(专项练习)-八年级数学下册基础知识专项讲练(人教版)
展开专题18.47 平行四边形几何模型——十字架模型
(专项练习)
一、单选题
1.如图,将一边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为( )
A.12 B.13 C.14 D.15
2.如图,正方形ABCD的边长为3,E为BC边上一点,BE=1.将正方形沿GF折叠,使点A恰好与点E重合,连接AF,EF,GE,则四边形AGEF的面积为( )
A.2 B.2 C.6 D.5
3.如图,将边长为3的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,连接PQ,则GPQ的周长最小值是( )
A. B. C. D.
4.如图,将一边长为12的正方形纸片的顶点A折叠至边上的点E,使,若折痕为,则的长为( )
A.13 B.14 C.15 D.16
5.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为( )
A. B.3 C. D.
二、填空题
6.如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=____.
7.如图,将一边长为的正方形纸片的顶点折叠至边上的点,使,折痕为,则的长__________.
8.如图,将边长为8的正方形纸片ABCD折叠,使点D落在BC边的点E处,点A落在点F处,折痕为MN,若MN=4,则线段CN的长是____.
9.如图,现有一张边长为的正方形纸片,点为正方形边上的一点(不与点,点重合)将正方形纸片折叠,使点落在边上的处,点落在处,交于,折痕为,连接,.则的周长是______.
三、解答题
10.正方形ABCD中,点E、F在BC、CD上,且BE=CF,AE与BF交于点G.
(1)如图1,求证AE⊥BF;
(2)如图2,在GF上截取GM=GB,∠MAD的平分线交CD于点H,交BF于点N,连接CN,求证:AN+CN=BN;
11.如图1,在正方形中,为上一点,连接,过点作于点,交于点.
(1)求证:;
(2)如图2,连接、,点、、、分别是、、、的中点,试判断四边形的形状,并说明理由;
(3)如图3,点、分别在正方形的边、上,把正方形沿直线翻折,使得的对应边恰好经过点,过点作于点,若,正方形的边长为3,求线段的长.
12.如图,正方形ABCD边长为4,点G在边AD上(不与点A、D重合),BG的垂直平分线分别交AB、CD于E、F两点,连接EG.
(1)当AG=1时,求EG的长;
(2)当AG的值等于 时,BE=8-2DF;
(3)过G点作GM⊥EG交CD于M
①求证:GB平分∠AGM;
②设AG=x,CM=y,试说明的值为定值.
参考答案
1.B
【解析】
【详解】
过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△ADE
∴PQ=AE=.
【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
2.D
【解析】
【分析】
作FH⊥AB于H,交AE于P,设AG=GE=x,在Rt△BGE中求出x,在Rt△ABE中求出AE,再证明△ABE≌△FHG,得到FG=AE,然后根据S四边形AGEF=S△AGF+S△EGF求解即可
【详解】
解:作FH⊥AB于H,交AE于P,则四边形ADFH是矩形,由折叠的性质可知,AG=GE,AE⊥GF,AO=EO.
设AG=GE=x,则BG=3-x,
在Rt△BGE中,
∵BE2+BG2=GE2,
∴12+(3-x)2=x2,
∴x=.
在Rt△ABE中,
∵AB2+BE2=AE2,
∴32+12=AE2,
∴AE=.
∵∠HAP+∠APH=90°,∠OFP+∠OPF=90°,∠APH=∠OPF,
∴∠HAP=∠OFP,
∵四边形ADFH是矩形,
∴AB=AD=HF.
在△ABE和△FHG中,
,
∴△ABE≌△FHG,
∴FG=AE=,
∴S四边形AGEF=S△AGF+S△EGF
=
=
=
=
=5.
故选D.
【点拨】本题考查了折叠的性质,正方形的性质,矩形的判定与性质,三角形的面积,以及勾股定理等知识,熟练掌握折叠的性质是解答本题的关键.
3.B
【解析】
【分析】
连接BP,取CD的中点M,连接PM,根据折叠的性质,PM=PQ,GH=DC,PC=PG,要求△GPQ的周长的最小值,只需求PM+PB的最小值,当M、P、B三点共线时,PM+BP=BM最小,在Rt△BCM中,勾股定理求出BM,即可求解.
【详解】
解:连接BP,取CD的中点M,连接PM,
由折叠可知,PM=PQ,GH=DC,PC=PG,
在Rt△BCG中,P是CG的中点,
∴BP=PG=GC,
∵Q是GH的中点,
∴QG=GH,
∴△GPQ的周长=PQ+QG+PG=PM+GH+PB=PM+PB+CD,
∵CD=3,
∴△GPQ的周长=PM+PB+,
当M、P、B三点共线时,PM+BP=BM最小,
在Rt△BCM中,BM=,
∴△GPQ的周长的最小值为.
故选B.
【点评】
本题考查图形的翻折变换,熟练掌握正方形的性质、直角三角形的性质,正确添加辅助线是解题的关键.
4.A
【解析】
【分析】
过点P作PM⊥BC于点M,由折叠得到PQ⊥AE,从而得到∠AED=∠APQ,可得△PQM≌△ADE,从而得到PQ=AE,再由勾股定理,即可求解.
【详解】
解:过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
在正方形ABCD中,AD∥BC,∠D=90°,CD⊥BC,
∴∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∴∠APQ=∠PQM,
∴∠PQM=∠APQ=∠AED,
∵PM⊥BC,
∴PM=AD,
∵∠D=∠PMQ=90°,
∴△PQM≌△ADE,
∴PQ=AE,
在 中,,AD=12,
由勾股定理得:
,
∴PQ=13.
故选:A.
【点拨】本题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,得到△PQM≌△ADE是解题的关键.
5.C
【解析】
【分析】
设EF=FD=x,在RT△AEF中利用勾股定理即可解决问题.
【详解】
解:∵将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,
∴EF=DE,AB=AD=6cm,∠A=90°
∵点E是AB的中点,
∴AE=BE=3cm,
在Rt△AEF中,EF2=AF2+AE2,
∴(6﹣AF)2=AF2+9
∴AF=
故选C.
【点拨】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.
6..
【解析】
【分析】
根据正方形的性质得到AB=BC,∠ABE=∠BCF=90°,推出∠BAE=∠EBH,根据全等三角形的性质得到CF=BE=2,求得DF=5﹣2=3,根据勾股定理即可得到结论.
【详解】
∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°,
∴∠BAE+∠AEB=90°,
∵BH⊥AE,
∴∠BHE=90°,
∴∠AEB+∠EBH=90°,
∴∠BAE=∠EBH,
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA),
∴CF=BE=2,
∴DF=5﹣2=3,
∵四边形ABCD是正方形,
∴AB=AD=5,∠ADF=90°,
由勾股定理得:AF===.
故答案为.
【点拨】此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE≌△BCF是解本题的关键.
7.13
【解析】
【分析】
先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△AED,从而求出PQ=AE.
【详解】
过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△AED
∴PQ=AE==13.
故答案是:13.
【点拨】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
8.3
【解析】
【分析】
过点M作MH⊥CD于点H.连接DE,结合题意可知MN垂直平分DE,先通过证明△MHN≅△DCE得出DE=MN=,然后利用勾股定理求出CE的长,最后在Rt△ENC中利用勾股定理求出DN,最后进一步求出CN即可.
【详解】
如图所示,过点M作MH⊥CD于点H.连接DE.
根据题意可知MN垂直平分DE,易证得:∠EDC=∠NMH,MH=AD,
∵四边形ABCD是正方形,
∴MH=AD=CD,
∵∠MHN=∠C=90°,
∴△MHN≅△DCE(ASA),
∴DE=MN=,
在Rt△DEC中,,
设DN=EN=,则CN=,
在Rt△ENC中,,
∴,
解得:,
∴CN=,
故答案为:3.
【点拨】本题主要考查了正方形性质和全等三角形性质与判定及勾股定理的综合运用,熟练掌握相关方法是解题关键.
9.16.
【解析】
【分析】
解过点A作AM⊥GH于M,由正方形纸片折叠的性质得出∠EGH=∠EAB=∠ADC=90°,AE=EG,则EG⊥GH,∠EAG=∠EGA,由垂直于同一条直线的两直线平行得出AM∥EG,得出∠EGA=∠GAM,则∠EAG=∠GAM,得出AG平分∠DAM,则DG=GM,由AAS证得△ADG≌△AMG得出AD=AM=AB,由HL证得Rt△ABP≌Rt△AMP得出BP=MP,则△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=16.
【详解】
解:过点A作AM⊥GH于M,如图所示:
∵将正方形纸片折叠,使点A落在CD边上的G处,
∴∠EGH=∠EAB=∠ADC=90°,AE=EG,
∴EG⊥GH,∠EAG=∠EGA,
∴AM∥EG,
∴∠EGA=∠GAM,
∴∠EAG=∠GAM,
∴AG平分∠DAM,
∴DG=GM,
在△ADG和△AMG中,
∴△ADG≌△AMG(AAS),
∴AD=AM=AB,
在Rt△ABP和Rt△AMP中,
∴Rt△ABP≌Rt△AMP(HL),
∴BP=MP,
∴△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=8+8=16,
故答案为16.
【点拨】本题考查了折叠的性质、正方形的性质、角平分线的判定与性质、全等三角形的判定与性质等知识,熟练掌握折叠的性质,通过作辅助线构造全等三角形是解题的关键.
10.(1)见解析;(2)见解析;
【解析】
【分析】
(1)根据正方形的性质得AB=BC,,用SAS证明,得,根据三角形内角和定理和等量代换即可得;
(2)过点B作,交AN于点H,根据正方形的性质和平行线的性质,用SAS证明,得,根据角平分线性质得,则是等腰直角三角形,用SAS证明,得AH=CN,在中,根据勾股定理即可得;
【详解】
解:(1)∵四边形ABCD 是正方形,
∴AB=BC,,
在和中,
∴(SAS),
∴,
∵,
∴,
∴,
∴;
(2)如图所示,过点B作,交AN于点H,
∵四边形ABCD是正方形,
∴AB=AC,,
∵,
,
∴,
由(1)得,,
∴,
∴,
∴,
∴,
在和中,
∴(SAS),
∴,
∵AN平分,
∴,
∴,
,
,
,
∴,
∴,
∴是等腰直角三角形,
∴BH=BN,
在和中,
∴(SAS),
∴AH=CN,
在中,根据勾股定理
,
∴;
【点拨】本题考查了正方形的性质,全等三角形的判定与性质,三角形内角和定理,角平分线,等腰直角三角形的判定与性质,勾股定理和锐角三角函数,解题的关键是掌握并灵活运用这些知识点.
11.(1)见解析;(2)四边形为正方形,理由见解析;(3)
【解析】
【分析】
(1)由四边形为正方形,可得,推得,由,可得,可证即可;
(2)、为、中点,可得为的中位线,可证,,由点、、、分别是、、、的中点,可得PQ是的中位线,MQ为的中位线,NP为的中位线,可证,,,,,,可证四边形为平行四边形.再证四边形为菱形,最后证即可;
(3)延长交于点,由对称性可得,,,由勾股定理可求,可得,设,在中,,解得,在中,可求.
【详解】
(1)证明:∵四边形为正方形,
∴,
∴,
∵,
∴∠AHB=90°,
∴,
∴,
在与中,
,
∴,
∴.
(2)解:四边形为正方形,理由如下:
∵、为、中点,
∴为的中位线,
∴,,
∵点、、、分别是、、、的中点,
∴PQ是的中位线,MQ为的中位线,NP为的中位线,,
∴,,,,,,
∴,,
∴四边形为平行四边形.
∵,
∴,
∴四边形为菱形,
∵,,
∴,
∵,
∴,
∴四边形为正方形.
(3)解:延长交于点,
由对称性可知
,,,
在中,
,
∴,
设,则,
在中,
,
,
∴,
在中,
.
【点拨】本题考查正方形性质与判定,等角的余角性质三角形全等判定与性质,三角形中位线判定与性质,勾股定理,根据勾股定理建构方程,解拓展一元一次方程等知识,掌握以上知识是解题关键.
12.(1);(2)(3)①见解析;②,理由见解析
【解析】
【分析】
(1)根据EF是线段BG的垂直平分线,BE=EG,设EG=EB=x,则AE=AB-BE=4-x,再由勾股定理求解即可;
(2)过点F作FH⊥AB于H,连接FB,FG,由BE=8-2DF,CF=CD-DF=4-DF,得到BE=2CF,先证明四边形BCFH是矩形,得到CF=HB,则BH=EH=FC,设AG=x,BE=y,则AE=4-y,GD=4-x,CF=,由,,,可以得到①,②,联立①②求解即可得到答案;
(3)①先证明∠EBG=∠EGB,然后根据ABG+∠AGB=90°,∠EGB+∠BGM=90°,即可得到∠AGB=∠BGM;
②连接BM,过点B作BH⊥GM,由角平分线的性质得到BH=AB=4,由,可以得到,由勾股定理可以得到即,最后解方程即可得到答案.
【详解】
解:(1)∵EF是线段BG的垂直平分线,
∴BE=EG,
∵四边形ABCD是正方形,且边长为4,
∴AB=4,∠A=90°,
设EG=EB=x,则AE=AB-BE=4-x,
∵,
∴,
解得,
∴;
(2)如图所示,过点F作FH⊥AB于H,连接FB,FG
∵EF是线段BG的垂直平分线,
∴BF=FG,
∵BE=8-2DF,CF=CD-DF=4-DF,
∴BE=2CF,
∵四边形ABCD是正方形,FH⊥AB,
∴∠HBC=∠C=∠BHF=90°,
∴四边形BCFH是矩形,
∴CF=HB,
∴BH=EH=FC,
设AG=x,BE=y,则AE=4-y,GD=4-x,CF=,
∵,,,
∴①,②,
联立①②解得或(舍去),
∴当时,BE=8-2DF,
故答案为:;
(3)①∵EF是线段BG的垂直平分线,
∴EG=BE,
∴∠EBG=∠EGB,
∵四边形ABCD是正方形,EG⊥GM,
∴∠A=∠EGM=90°,
∴∠ABG+∠AGB=90°,∠EGB+∠BGM=90°,
∴∠AGB=∠BGM,
∴BG平分∠AGM;
②如图,连接BM,过点B作BH⊥GM,
由(3)①得BG平分∠AGM,
∴BH=AB=4,
∵AG=x,CM=y,
∴DG=4-x,DM=4-y,
∵,
∴,
∴,
∴,
∵,
∴
∴
∴,
∴,
∴,
当时,则,
∴(不符合题意),
∴
∴.
【点拨】本题主要考查了正方形的性质,勾股定理,角平分线的性质,线段垂直平分线的性质,等腰三角形的性质与判定,三角形的面积等等,解题的关键在于能够熟练掌握相关知识进行求解.
2024年中考数学几何模型专项复习讲与练 模型30 平行四边形——十字架模型-原卷版+解析: 这是一份2024年中考数学几何模型专项复习讲与练 模型30 平行四边形——十字架模型-原卷版+解析,共21页。
中考数学几何模型专项复习 模型30 平行四边形——十字架模型-(原卷版+解析): 这是一份中考数学几何模型专项复习 模型30 平行四边形——十字架模型-(原卷版+解析),共20页。
专题18.48 平行四边形几何模型——正方形中的三垂直(专项练习)-八年级数学下册基础知识专项讲练(人教版): 这是一份专题18.48 平行四边形几何模型——正方形中的三垂直(专项练习)-八年级数学下册基础知识专项讲练(人教版),共49页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。