所属成套资源:【期末总复习】2022-2023学年北师大版数学九年级上册期末挑战满分冲刺卷(专题复习+题型特训+期末押题)
【期末满分冲刺】2022-2023学年 北师大版数学-九年级上册数学知识梳理汇总(第1-3章)
展开
这是一份【期末满分冲刺】2022-2023学年 北师大版数学-九年级上册数学知识梳理汇总(第1-3章),共8页。试卷主要包含了相似图形及比例线段,相似三角形,位似等内容,欢迎下载使用。
九年级上册数学知识梳理汇编(第4-6章)第4章 图形的相似 知识梳理一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures).要点:
(1) 相似图形就是指形状相同,但大小不一定相同的图形;
(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形全等;2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点:(1)若a:b=c:d ,则ad=bc;(d也叫第四比例项)(2)若a:b=b:c ,则 =ac(b称为a、c的比例中项).4.平行线分线段成比例: 基本事实:两条直线被一组平行线所截,所得的对应线段成比例.推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.二、相似三角形相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):两角分别相等的两个三角形相似. 要点:
要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.判定方法(三):两边成比例且夹角相等的两个三角形相似.要点: 此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比; 相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。3.相似多边形的性质: (1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.三、位似1.位似图形定义: 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.位似图形的性质:(1)位似图形的对应点和位似中心在同一条直线上;
(2) 位似图形的对应点到位似中心的距离之比等于相似比;
(3)位似图形中不经过位似中心的对应线段平行.要点:(1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.(2)位似变换中对应点的坐标变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.第5章 投影与视图 知识梳理一、投影投影现象物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象.影子所在的平面称为投影面.2. 中心投影
手电筒、路灯和台灯的光线可以看成是从一点发出的,这样的光线照射在物体上所形成的投影,称为中心投影.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.
(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.
在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.
要点:
光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.3.平行投影
1.平行投影的定义太阳光线可看成平行光线,平行光线所形成的投影称为平行投影.相应地,我们会得到两个结论:
①等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.
②等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.
2. 物高与影长的关系①在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.②在同一时刻,不同物体的物高与影长成正比例.
即:.
利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.
注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.
要点:
1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.
2.物体与影子上的对应点的连线是平行的就说明是平行光线.4、正投影 如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,当平行光线与投影面垂直时,这种投影称为正投影. 要点:
正投影是特殊的平行投影,它不可能是中心投影.
二、中心投影与平行投影的区别与联系1.区别:
(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.
(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向. 2.联系:
(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.
(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.
要点:
在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.
三、视图1.三视图
(1)视图
用正投影的方法绘制的物体在投影面上的图形,称为物体的视图.
(2)三视图
在实际生活和工程中,人们常常从正面、左面和上面三个不同方向观察一个物体,分别得到这个物体的三个视图.通常我们把从正面得到的视图叫做主视图,从左面得到的视图叫做左视图,从上面得到的视图叫做俯视图.主视图、左视图、俯视图叫做物体的三视图.
2.三视图之间的关系(1)位置关系
一般地,把俯视图画在主视图下面,把左视图画在主视图右面,如图(1)所示.
(2)大小关系
三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2)所示.
要点:
三视图把物体的长、宽、高三个方面反映到各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和宽,抓住这些特征能为画物体的三视图打下坚实的基础.3.画几何体的三视图画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:
(1)确定主视图的位置,画出主视图;
(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;
(3)在主视图的正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”.
几何体上被其他部分遮挡而看不见的部分的轮廓线要画成虚线.
要点:
画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以,首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.4.由三视图想象几何体的形状
由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.
要点:
由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2)根据实线和虚线想象几何体看得见和看不见的轮廓线;(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.第6章 反比例函数 知识梳理一、反比例函数的概念一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.要点:在中,自变量的取值范围是, ()可以写成()的形式,也可以写成的形式.二、反比例函数解析式的确定 反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.三、反比例函数的图象和性质1.反比例函数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与轴、轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点:观察反比例函数的图象可得:和的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①的图象是轴对称图形,对称轴为两条直线;②的图象是中心对称图形,对称中心为原点(0,0);③(k≠0)在同一坐标系中的图象关于轴对称,也关于轴对称. 注:正比例函数与反比例函数,当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称. 2.反比例函数的性质(1)图象位置与反比例函数性质 当时,同号,图象在第一、三象限,且在每个象限内,随的增大而减小;当时,异号,图象在第二、四象限,且在每个象限内,随的增大而增大.(2)若点()在反比例函数的图象上,则点()也在此图象上,故反比例函数的图象关于原点对称.
(3)正比例函数与反比例函数的性质比较 正比例函数反比例函数解析式图 像直线有两个分支组成的曲线(双曲线)位 置,一、三象限;
,二、四象限,一、三象限
,二、四象限增减性,随的增大而增大
,随的增大而减小,在每个象限,随的增大而减小
,在每个象限,随的增大而增大(4)反比例函数y=中的意义①过双曲线(≠0) 上任意一点作轴、轴的垂线,所得矩形的面积为.②过双曲线(≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为.四、应用反比例函数解决实际问题须注意以下几点
1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.
相关试卷
这是一份【期末满分冲刺】2022-2023学年 北师大版数学九年级上学期-特训07 期末解答题汇编(第1-6章),文件包含期末满分冲刺2022-2023学年北师大版数学九年级上学期-特训07期末解答题汇编第1-6章解析版docx、期末满分冲刺2022-2023学年北师大版数学九年级上学期-特训07期末解答题汇编第1-6章原卷版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
这是一份【期末满分冲刺】2022-2023学年 北师大版数学九年级上学期-特训06 期末选填题汇编(第1-6章),文件包含期末满分冲刺2022-2023学年北师大版数学九年级上学期-特训06期末选填题汇编第1-6章解析版docx、期末满分冲刺2022-2023学年北师大版数学九年级上学期-特训06期末选填题汇编第1-6章原卷版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
这是一份【期末满分冲刺】2022-2023学年 北师大版数学九年级上学期-特训05 解答压轴题(第1-4章),文件包含期末满分冲刺2022-2023学年北师大版数学九年级上学期-特训05解答压轴题第1-4章解析版doc、期末满分冲刺2022-2023学年北师大版数学九年级上学期-特训05解答压轴题第1-4章原卷版docx等2份试卷配套教学资源,其中试卷共106页, 欢迎下载使用。