中考数学压轴题题型组合卷六
展开
这是一份中考数学压轴题题型组合卷六,共8页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
中考压轴题·题型组合卷(六)(满分:30分)一、填空题(共2小题,每小题3分,共6分)1.在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为 . 2.在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD= .二、解答题(共2小题,每小题12分,共24分)3.如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.
4.如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出自变量的取值范围;(2)如果=2,求ED的长;(3)连接CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.
参考答案一、填空题(共2小题,每小题3分,共6分)1.在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为 .【分析】综合考查等可能条件下的概率和一次函数及坐标系的知识,先求出中任取一张时所得点的坐标数,再画出图象交点个数,由图象上各点的位置直接解答即可.【解答】解:由题意得,所得的点有5个,分别为(1,1)(2,)(3,)(,2)(,3);再在平面直角坐标系中画出直线y=﹣x+3与两坐标轴围成的△AOB.在平面直角坐标系中描出上面的5个点,可以发现落在△AOB内的点有(1,1)(2,)(,2),所以点P落在△AOB内的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2.在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD= 12﹣12 .【分析】过点C作CF⊥AB于点F,则四边形AFCD为矩形,根据矩形的性质可得出BF=5,结合cos∠ABC=,可得出CF的长度,进而可得出AD的长度,在Rt△BAD中利用勾股定理可求出BD的长度,由折叠的性质可得出BP=BA=12,再由PD=BD﹣BP即可求出PD的长度.【解答】解:过点C作CF⊥AB于点F,则四边形AFCD为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又∵cos∠ABC=,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE沿BE翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为:12﹣12. 二、解答题(共2小题,每小题12分,共24分)3.如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.【分析】(1)将A(1,0)、C(0,3)代入抛物线的解析式可求得关于a、c的方程组,解得a、c的值可求得抛物线的解析式,最后依据配方法可求得抛物线的顶点坐标;(2)首先求得A点的坐标,即可证得OA=OC=3.得出∠CAO=∠OCA,然后根据勾股定理求得AD、DC、AC,进一步证得△ACD是直角三角形且∠ACD=90°,解直角三角形得出tan∠OCB==,tan∠DAC==,即可证得∠DAC=∠OCB,进而求得∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,由已知得出QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得出x﹣2+2y=0,然后与抛物线的解析式联立方程,解方程即可求得.【解答】解:(1)把B(1,0)和C(0,3)代入y=ax2﹣2x+c中,得,解得,∴抛物线的解析式是:y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标D(﹣1,4);(2)令y=0,则﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∴A(﹣3,0),∴OA=OC=3,∴∠CAO=∠OCA,在Rt△BOC中,tan∠OCB==,∵AC==3,DC==,AD==2,∴AC2+DC2=20=AD2;∴△ACD是直角三角形且∠ACD=90°,∴tan∠DAC===,又∵∠DAC和∠OCB都是锐角,∴∠DAC=∠OCB,∴∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,A(﹣3,0),D(﹣1,4),∵△ADQ是以AD为底的等腰三角形,∴QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得:x﹣2+2y=0,由,解得,.∴点Q的坐标是(,),(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要利用了待定系数法求二次函数的解析式、等腰直角三角形的性质和判定、勾股定理及逆定理的应用以及解直角三角形等,证得AC2+DC2=20=AD2从而得到∠DAC=∠OCB是解题的关键. 4.如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出自变量的取值范围;(2)如果=2,求ED的长;(3)连接CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.【分析】(1)先利用勾股定理AB=10,进而EH=x,EH=x,FH=x,利用勾股定理建立函数关系式;(2)先判断出∠CAE=∠EBP=∠ABC,进而得出△BEH≌△BEG,即可求出BE,即可得出结论;(3)分两种情况,讨论进行判断即可得出结论.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°∴AB=10,如图1,过E作EH⊥AB于H,在Rt△ABC中,sinB=,cosB=在Rt△BEH中,BE=BF=x,∴EH=x,BH=x,∴FH=x,在Rt△EHF中,EF2=EH2+FH2=(x)2+(x)2=x2,∴y=x(0<x<8)(2)如图2,取的中点P,联结BP交ED于点G∵=2,P是的中点,EP=EF=PD.∴∠FBE=∠EBP=∠PBD.∵EP=EF,BP过圆心,∴BG⊥ED,ED=2EG=2DG,又∵∠CEA=∠DEB,∴∠CAE=∠EBP=∠ABC,又∵BE是公共边,∴△BEH≌△BEG.∴EH=EG=GD=x.在Rt△CEA中,∵AC=6,BC=8,tan∠CAE=tan∠ABC=,∴CE=AC•tan∠CAE==∴BE=8﹣=∴ED=2EG=x=, (3)四边形ABDC不可能为直角梯形,①当CD∥AB时,如图3,如果四边形ABDC是直角梯形,只可能∠ABD=∠CDB=90°.在Rt△CBD中,∵BC=8.∴CD=BC•cos∠BCD=,BD=BC•sin∠BCD==BE.∴=,;∴.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形,②当AC∥BD时,如图4,如果四边形ABDC是直角梯形,只可能∠ACD=∠CDB=90°.∵AC∥BD,∠ACB=90°,∴∠ACB=∠CBD=90°.∴∠ABD=∠ACB+∠BCD>90o.与∠ACD=∠CDB=90°矛盾.∴四边形ABDC不可能为直角梯形.即:四边形ABDC不可能是直角梯形【点评】此题是圆的综合题,主要考查了勾股定理,全等三角形的判定和性质,锐角三角函数,反证法,判断出△BEH≌△BEG是解本题的关键.
相关试卷
这是一份中考数学压轴题题型组合卷一,共12页。试卷主要包含了选择,解答题等内容,欢迎下载使用。
这是一份中考数学压轴题题型组合卷五,共9页。试卷主要包含了选择,解答题等内容,欢迎下载使用。
这是一份中考数学压轴题题型组合卷四,共10页。试卷主要包含了选择,解答题等内容,欢迎下载使用。