数学七年级上册第六章 一次函数5 一次函数的应用教案
展开6.5 一次函数的应用(一)
●教学目标
(一)教学知识点
1.能通过函数图象获取信息,发展形象思维.
2.能利用函数图象解决简单的实际问题.
3.初步体会方程与函数的关系.
(二)能力训练要求
1.通过函数图象获取信息,培养学生的数形结合意识.
2.根据函数图象解决简单的实际问题,发展学生的数学应用能力.
3.通过方程与函数关系的研究,建立良好的知识联系.
(三)情感与价值观要求
通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识.
●教学重点
一次函数图象的应用.
●教学难点
正确地根据图象获取信息.
●教学方法
尝试指导法.
●教具准备
投影片两张:
第一张:补充练习(记作§6.5.1 A);
第二张:补充练习(记作§6.5.1 B).
●教学过程
Ⅰ.导入新课
在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数的应用.
Ⅱ.讲授新课
一、做一做
由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t(天)与蓄水量V(万米3)的关系如下图所示,回答下列问题:
(1)水库干旱前的蓄水量是多少?
(2)干旱持续10天,蓄水量为多少?连续干旱23天呢?
(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?
(4)按照这个规律,预计持续干旱多少天水库将干涸?
[师]请大家根据图象回答问题,有困难的请大家互相交流.
[生甲]答:(1) 水库干旱前即t=0时,也就是1200万米3.(2)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值.
当t=10时,V约为1000万米3.
同理可知当t为23天时,V约为750万米3.
[生乙](3)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t的值.
当V等于400万米3时,所对应的t的值约为40天.
[生丙]水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求.
当V为0时,所对应的t的值约为60天.
二、练一练
某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示.
根据图象回答下列问题:
(1)一箱汽油可供摩托车行驶多少千米?
(2)摩托车每行驶100千米消耗多少升汽油?
(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?
分析:(1)函数图象与x轴交点的横坐标即为摩托车行驶的最长路程.
(2)x从0增加到100时,y从10开始减少,减少的数量即为消耗的数量.
(3)当y小于1时,摩托车将自动报警.
[生]答:(1)观察图象,得
当y=0时,x=500
因此一箱汽油可供摩托车行驶500千米.
(2)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100千米消耗2升汽油.
(3)当y=1时,x=450
因此行驶了450千米后,摩托车将自动报警.
Ⅲ.课堂练习
(一)随堂练习
1.看图填空
(1)当y=0时,x=________________ ;
(2)直线对应的函数表达式是________________ .
解:(1)观察图象可知当y=0时,x=-2;
(2)直线过(-2,0)和(0,1)
设表达式为y=kx+b,得
-2k+b=0 ①
b=1 ②
把②代入①得 k=
∴直线对应的函数表达式是y=x+1
2.议一议
一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?
[师]请大家根据刚做的练习来进行解答.
[生]一元一次方程0.5x+1=0的解为x=-2,一次函数y=0.5x+1包括许多点.因此0.5x+1=0是y=0.5x+1的特殊情况.
[师]当一次函数y=0.5x+1的函数值为0时,相应的自变量的值即为方程0.5x+1=0的解.
函数y=0.5x+1与x轴交点的横坐标即为方程0.5x+1=0的解.
(二)补充练习
投影片(§6.5.1 A)
某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原来有40元,2个月后盒内有80元. (1)求盒内钱数y(元)与存钱月数x之间的函数关系式(不要求写出x的取值范围); (2)在直角坐标系中作出该函数的图象; (3)观察图象回答:按上述方法,该同学经过几个月能存够200元. |
解:(1)y=40+20x
(2)函数图象如下:
(3)观察图象可知,该同学经过8个月能存够200元.
投影片(§6.5.1 B)
全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示. (1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2? (2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源? (3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2. |
解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.
(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.
(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于(200-176)÷2=12,故到第12年底,该地区的沙漠面积能减少到176万千米2.
Ⅳ.课时小结
本节课主要应掌握以下内容:
1.能通过函数图象获取信息.
2.能利用函数图象解决简单的实际问题.
3.初步体会方程与函数的关系
Ⅴ.课后作业
习题6.7
Ⅵ.活动与探究
下图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80 km.请你根据图象回答或解决下面的问题:
(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?
(2)两人在途中行驶的速度分别是多少?
(3)请你分别求出表示自行车和摩托车行驶过程的函数表达式;
(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式.
①自行车行驶在摩托车前面;
②自行车与摩托车相遇;
③自行车行驶在摩托车后面.
解:(1)由图可以看出:自行车早出发3个小时;摩托车到达乙地较早,早了3个小时.
(2)对自行车而言:行驶的距离是80 km,耗时8小时,速度是80÷8=10(km/h);
对摩托车而言:行驶的距离是80 km,耗时2个小时,速度是80÷2=40(km/h);
(3)设表示自行车行驶过程的函数解析式为y=kx,∵x=8时,y=80
∴80=8k,∴k=10
∴表示自行车行驶过程的函数解析式为:
y=10x;
设表示摩托车行驶过程的函数解析式为y=ax+b
∵x=3时,y=0,而x=5时,y=80;
∴0=3a+b ①
80=5a+b ②
由①得 b=-3a
由②得 b=80-5a
∴-3a=80-5a
∴a=40
把a=40代入①得
b=-120
∴表示摩托车行驶过程的函数解析式为
y=40x-120
(4)在3<x<5时间段内两车均行驶在途中
自行车在摩托车前面:10x>40x-120
两车相遇:10x=40x-120
自行车在摩托车的后面.
10x<40x-120
●板书设计
一次函数的应用(一) 一、做一做(有关水库蓄水量与干旱时间的问题) 二、练一练(根据图象求摩托车行驶路程与所耗油量的问题) 三、议一议(方程0.5x+1=0与函数y=0.5x+1之间的关系) 四、课堂练习 五、课时小结 六、课后作业 |
●备课资料
参考练习
一、填空题
1.已知直线y=x+b经过点(-2,),则b=_________.
2.一次函数y=-2x-1,当x=-5时,y=_________,当y=-7时,x=_________.
3.一弹簧,不挂物体时,长6 cm,挂上物体后,所挂重物每增加1 kg,弹簧就伸长 cm,但所挂重物不能超过10 kg,则弹簧总长y(m)与重物质量x(kg)之间的函数关系式为_________.
4.函数y=x+4的图象与x轴交点的坐标为________________,与y轴交点的坐标为_________.
5.函数y=x的图象经过(0,___),和(____,)两点.
6.已知直线y=kx+b过点(1,3)和点(-1,1),则kb=_________.
7.如果函数y=x+2的图象在x轴上方,则x_________.
二、选择题
1.已知下列函数,其中一次函数有( )
①y=x2+1 ②y=8x ③y= ④y=+1
A.1个 B.2个 C.3个 D.4个
2.已知y与x成正比例,如果x=4时,y=2,那么x=3时,y=( )
A. B.2 C.6 D.6
3.下列说法中,不正确的是( )
A.在y=-中,y与x成正比例
B.在y=3x+2中,y与x成正比例
C.在xy=1时,y与成正比例
D.在圆面积公式S=πr2中,S与r2成正比例
4.如果点P(-1,3)在过原点的一条直线上,那么这条直线是( )
A.y=-3x B.y=x
C.y=3x-1 D.y=1-3x
5.当x逐渐增大,y反而减小的函数是( )
A.y=x B.y=0.001x
C.y=x D.y=-5x
三、解答题
1.矩形的长是10厘米,写出面积S与宽a厘米的关系式.
2.已知y-3与x成正比例,且x=2时,y=7.
(1)写出y与x之间的函数关系式;
(2)计算x=4时,y的值.
(3)计算y=4时,x的值.
3.A、B两地相距30千米,某人从A地向B地以平均每小时4千米的速度行进,当他离开A地t小时,且与B地相距S千米时,求S与t的函数关系式?并问当他离开5小时后,与B地相距多少千米?
初中数学人教版七年级下册6.3 实数教学设计: 这是一份初中数学人教版七年级下册6.3 实数教学设计,共4页。
数学鲁教版 (五四制)5 一次函数的应用第2课时教学设计: 这是一份数学鲁教版 (五四制)5 一次函数的应用第2课时教学设计,共9页。教案主要包含了例题讲解,补充例题,想一想,课时小结,课后作业等内容,欢迎下载使用。
鲁教版 (五四制)七年级上册3 一次函数的图象教学设计: 这是一份鲁教版 (五四制)七年级上册3 一次函数的图象教学设计,共6页。教案主要包含了教学目标,教学重点,教学方法,教学设计,分层作业等内容,欢迎下载使用。