![广东省广州市黄埔区港湾中学2022-2023学年七年级数学上册期末模拟测试题 (含答案)第1页](http://www.enxinlong.com/img-preview/2/3/13800455/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省广州市黄埔区港湾中学2022-2023学年七年级数学上册期末模拟测试题 (含答案)第2页](http://www.enxinlong.com/img-preview/2/3/13800455/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省广州市黄埔区港湾中学2022-2023学年七年级数学上册期末模拟测试题 (含答案)第3页](http://www.enxinlong.com/img-preview/2/3/13800455/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省广州市黄埔区港湾中学2022-2023学年七年级数学上册期末模拟测试题 (含答案)
展开
这是一份广东省广州市黄埔区港湾中学2022-2023学年七年级数学上册期末模拟测试题 (含答案),共11页。试卷主要包含了﹣的相反数是,下列计算正确的是,下列解方程的步骤中正确的是,若代数式ax2+4x﹣y+3﹣等内容,欢迎下载使用。
广东省广州市黄埔区港湾中学2022-2023学年七年级数学上册期末模拟测试题(附答案)一.选择题(共10小题,满分30分)1.﹣的相反数是( )A.﹣ B. C.﹣2 D.22.若x=2是方程4x+2m﹣14=0的解,则m的值为( )A.10 B.4 C.﹣3 D.33.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为( )A.两点之间,线段最短 B.两点确定一条直线 C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离4.一个角的度数等于60°20′,那么它的余角等于( )A.40°80′ B.39°80′ C.30°40′ D.29°40′5.下列计算正确的是( )A.﹣2﹣2=0 B.8a4﹣6a2=2a2 C.3(b﹣2a)=3b﹣2a D.﹣32=﹣96.下列解方程的步骤中正确的是( )A.由x﹣5=7,可得x=7﹣5 B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=x C.由x=﹣1,可得x=﹣ D.由,可得2(x﹣1)=x﹣37.下列方程中,与x﹣1=﹣x+3的解相同的是( )A.x+2=0 B.2x﹣3=0 C.x﹣2=2x D.x﹣2=08.若代数式ax2+4x﹣y+3﹣(2x2﹣bx+5y﹣1)的值与x的取值无关,则a+b的值为( )A.6 B.﹣6 C.2 D.﹣29.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,则下面所列方程正确的是( )A.9x+11=6x﹣16 B.9x﹣11=6x+16 C.6x﹣11=9x+16 D.6x+11=9x﹣16 10.已知整数a1、a2、a3、a4、…满足下列条件:a1=﹣1,a2=﹣|a1+2|,a3=﹣|a2+3|,a4=﹣|a3+4|,…,an+1=﹣|an+n+1|(n为正整数)依此类推,则a2022的值为( )A.﹣1010 B.﹣2020 C.﹣1011 D.﹣2022二.填空题(共5小题,满分15分)11.填空:1.4142135≈ (精确到0.001).12.计算77°53′26″+43°22′16″= .13.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是 .14.某种商品的标价为200元,为了吸引顾客,按九折出售,这时仍要盈利20%,则这种商品的进价是 元.15.符号“f”,“g”分别表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,⋯,f(10)=9,⋯;(2),,,,⋯,,⋯.利用以上规律计算:= .三.解答题(共8小题,满分75分)16.计算:(﹣1)10×2+(﹣2)3÷4.17.如图,∠AOB=120°,OC、OE、OF是∠AOB内的三条射线,且∠COE=60°,OF平分∠AOE,∠COF=20°,求∠BOE的度数.18.先化简,再求值:,其中.19.解方程:(1)2(x+8)=3(x﹣1);(2)﹣=1.20.小奇借助有理数的运算,定义了一种新运算“⊕”,规则如下:a⊕b=ab+2a.(1)求的值;(2)若⊕x=x⊕3,求x的值.21.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?22.如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD、OE.并且使OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,求∠BOD的度数;(2)若∠AOD=110°,∠BOE=100°,求∠AOE的度数;(3)当∠AOD=n°时,则∠BOE=(150﹣n)°,求∠BOD的度数.23.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是3个单位长度,长方形ABCD的长AD是6个单位长度,长方形EFGH的长EH是10个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为14.(1)填空:点H在数轴上表示的数是 ,点A在数轴上表示的数是 .(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,原点为O.当OM=ON时,求x的值.(3)若长方形ABCD以每秒4个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,当S=12时,求此时t的值.
参考答案一.选择题(共10小题,满分30分)1.解:﹣的相反数是,故选:B.2.解:把x=2代入方程得:4×2+2m﹣14=0,解得:m=3,故选:D.3.解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:B.4.解:90°﹣60°20′=29°40′,故选:D.5.解:A、﹣2﹣2=﹣2+(﹣2)=﹣4,此选项错误;B、8a4与﹣6a2不是同类项,不能合并,此选项错误;C、3(b﹣2a)=3b﹣6a,此选项错误;D、﹣32=﹣9,此选项正确;故选:D.6.解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由x=﹣1,可得x=﹣6,不符合题意;D、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.7.解:x﹣1=﹣x+3,解得:x=2,将x=2代入各选项可得:A.左边=4,右边=0,左边≠右边,故本选项不合题意;B.左边=1,右边=0,左边≠右边,故本选项不合题意;C.左边=0,右边=4,左边≠右边,故本选项不合题意;D.左边=0,右边=0,左边=右边,故本选项符合题意;故选:D.8.解:ax2+4x﹣y+3﹣(2x2﹣bx+5y﹣1)=ax2+4x﹣y+3﹣2x2+bx﹣5y+1=(a﹣2)x2+(4+b)x﹣6y+4,∵ax2+4x﹣y+3﹣(2x2﹣bx+5y﹣1)的值与x的取值无关,∴a﹣2=0且4+b=0,∴a=2,b=﹣4,∴a+b=﹣2,故选:D.9.解:设有x个人共同出钱买鸡,根据题意得:9x﹣11=6x+16.故选:B.10.解:a1=﹣1,a2=﹣|﹣1+2|=﹣1,a3=﹣|﹣1+3|=﹣2,a4=﹣|﹣2+4|=﹣2,a5=﹣|﹣2+5|=﹣3,a6=﹣|﹣3+6|=﹣3,…,∴a1=a2=﹣1,a3=a4=﹣2,a5=a6=﹣3,…,∵2022÷2=1011,∴a2022=﹣1011,故选:C.二.填空题(共5小题,满分15分)11.解:1.4142135≈1.414(精确到0.001).故答案为:1.414.12.解:77°53′26″+43°22′16″=121°15′42″.故答案为:121°15′42″.13.解:∵a2+2a﹣3=0,∴a2+2a=3,∴2a2+4a﹣3=2(a2+2a)﹣3=2×3﹣3=3,故答案为:3.14.解:设这种商品的进价是x元,由题意可得:200×0.9﹣x=20%x,解得x=150,答:这种商品的进价是150元,故答案为:150.15.解:由(1)可知:f(n)=n﹣1,由(2)知:g(n)=,∴=2022﹣2021=1,故答案为:1.三.解答题(共8小题,满分75分)16.解:(﹣1)10×2+(﹣2)3÷4=1×2﹣8×=2﹣2=0.17.解:∵∠COE=60°,∠COF=20°,∴∠EOF=∠COE﹣∠COF=60°﹣20°=40°,∵OF平分∠AOE,∴∠AOE=2∠EOF=80°,∴∠BOE=∠AOB﹣∠AOE=120°﹣80°=40°.18.解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=,y=﹣2时,原式=﹣2+4=2.19.解:(1)2(x+8)=3(x﹣1),去括号,得2x+16=3x﹣3,移项,得2x﹣3x=﹣3﹣16,合并同类项,得﹣x=﹣19,系数化为1,得x=19;(2)﹣=1,去分母,得2(5x+1)﹣(2x﹣1)=6,去括号,得10x+2﹣2x+1=6,移项,得10x﹣2x=6﹣1﹣2,合并同类项,得8x=3,系数化为1,得x=.20.解:(1)根据题中的新定义得:4⊕=4×+2×4=2+8=10,则原式=(﹣3)⊕10=﹣3×10+2×(﹣3)=﹣30﹣6=﹣36;(2)已知等式利用题中的新定义化简得:x+1=3x+2x,去分母得:x+2=6x+4x,移项合并得:9x=2,解得:x=.21.解:(1)设乙工程队每天能完成x平方米的绿化改造面积,则甲工程队每天能完成(x+200)平方米的绿化改造面积,依题意得:x+200+x=800,解得:x=300,∴x+200=300+200=500.答:甲工程队每天能完成500平方米的绿化改造面积,乙工程队每天能完成300平方米的绿化改造面积.(2)选择方案①所需施工费用为600×=14400(元);选择方案②所需施工费用为400×=16000(元);选择方案③所需施工费用为(600+400)×=15000(元).∵14400<15000<16000,∴选择方案①的施工费用最少.22.解:(1)OB是∠AOC的平分线,∴∠BOC=∠AOB=50°;∵OD是∠COE的平分线,∴∠COD=∠DOE=30°,∴∠BOD=∠BOC+∠COD=50°+30°=80°;(2)∵OB平分∠AOC,OD平分∠COE,∴设∠EOD=∠DOC=x°,∠AOB=∠COB,∵∠AOD=110°,∠BOE=100°,∴∠AOB=∠BOC=100°﹣2x°,∴∠COD+∠COB+∠AOB=110°,∴x+100﹣2x+100﹣2x=110,解得x=30,即∠EOD=∠DOC=30°,∴∠AOE=∠AOD+∠DOE=110°+30°=140°.(3)设∠EOD=∠DOC=x°,∠AOB=∠BOC=y°,依题意可知,x°+y°+y°=n°,x°+x°+y°=(150﹣n)°则3x°+3y°=150°,∴x°+y°=50°,∴∠BOD=50°.23.解:(1)由题意得:ED=14,OE=5,EH=10,AD=6,∴OH=OE+EH=5+10=15,OD=ED﹣OE=14﹣5=9,∴OA=OD+AD=9+6=15,∴点H在数轴上表示的数是15,点A在数轴上表示的数是﹣15,故答案为:15;﹣15;(2)∵点M为线段AD的中点,AD=6,∴DM=3,∵线段AD的中点为M,∴M表示的数为﹣12,∵线段EH上一点N,且EN=EH,∴N表示的数为7,点M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,则经过x秒后,M点表示的数为4x﹣12,N点表示的数为7﹣3x,∵OM=ON,∴|4x﹣12|=|7﹣3x|,∴4x﹣12=7﹣3x,或4x﹣12=3x﹣7,∴x=,或x=5,∴x=秒或x=5秒时,OM=ON;(3)∵两个长方形的宽都是3个单位长度,两个长方形重叠部分的面积为12,∴重叠部分的的长方形的长为4,当点D运动到E点右边4个单位时,两个长方形重叠部分的面积为12,此时长方形ABCD运动的时间为:(14+4)÷4=(秒);当点A运动到H点左边4个单位时,两个长方形重叠部分的面积为12,此时长方形ABCD运动的时间为:(6+14+6)÷4=(秒),综上,长方形ABCD运动的时间为秒或秒时,两个长方形重叠部分的面积为12.
相关试卷
这是一份2023-2024学年广东省广州市黄埔区数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法错误的是,求出函数解析式.等内容,欢迎下载使用。
这是一份2023-2024学年广东省广州市黄埔区数学八上期末调研试题含答案,共7页。试卷主要包含了答题时请按要求用笔,若分式的值为零,则的值为,下列整式的运算中,正确的是,请你计算等内容,欢迎下载使用。
这是一份2022-2023学年广东省广州市黄埔区七下数学期末监测模拟试题含答案,共7页。试卷主要包含了在函数自变量x的取值范围是,已知等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)